General comments

In this study Simakou et al, set out to examine the effects of vitamin D3 administration, vibrational stimulation and their combined effect on THP-1 cells with a focus on their differentiation potential into macrophages. A series of RT-qPCRs were conducted to measure the various gene expression changes associated in response to stimuli (vitamin D3 vs 1000Hz or both) and cell condition (suspended vs adherent). The data presented shows novelty and proficiency that should make this manuscript eligible for publication in PeerJ.

The data is efficiently summarised and presented well in both graph and table format which allows clear comparison and interpretation of the data. The authors show novel expression patterns such as PKD2 upregulation with vitamin D3 administration. With further testing in other cell types, this may serve as unique signature of vitamin D3 stimulation.

A comment on potential limitations of THP-1 immortalised cell line vs primary cell lines may be warranted in order to acknowledge the need for further research and confirm findings in the future. In order to enhance readability, the authors should significantly improve sentence structure and avoid grammatical errors. This will avoid breaking the flow of the text and hasten understanding of key points presented.

1) The methodology should be clearer. For example, over the 72-hour period, how was vitamin D3 administered? Is it given once in the medium and left for 3 days? Is it replenished after each day?

Did the authors look at *PIEZO2* in THP-1 cells? It may be informative to include the sibling of PIEZO1 for comparative purposes. RT-qPCR analysis of this mechanosensor may be included across vitamin D3 treated, 1000Hz and combined conditions.

Alternatively, the reason why it was not analysed should be presented e.g., future studies will do so; or based on previous data PIEZO2 is not highly expressed in THP1-cells (Reference).

The authors summarise the data elegantly using tables (Tables 1, 2 and 3); however, the main text makes little to no reference of this. Guiding readers to use these tables as comparisons are made may help with the flow of data presentation and discussion points.

Conclusion should be added to abstract. Currently the abstract abruptly ends on Results. A clear "conclusion:" with a sentence or two to summarise the main findings should be included.

The figure legend for Figure 4 should be revised. I believe this refers to adherent cell data yet suspension is written.

Figure legend for Table 2 should be revised. I believe this is comparison of **stimulated** adherent THP-1 cells vs unstimulated adherent cells

Improve English and sentence structure throughout manuscript e.g., repetitive use of the phrase "the vitamin D3" can simply be replaced with "vitamin D3" for example line 288 "The vitamin D3 downregulated.." instead "Vitamin D3 downregulated.." may be used.

Improve sentence structure in lines 609-610 "This study had limitation because of the technology" – e.g., This study was limited by the technology which... line 73-74; improve sentence structure. Maybe break the sentence in two

- 2) Using only one vibrational parameter (1000Hz) may limit potential mechanosensory responses. For example, previous studies (Koizumi et al, 2014; Functional role for Piezo1 in stretchevoked Ca²⁺influx and ATP release in urothelial cell cultures. J Biol Chem 289 (23):16565-16575) have shown the presence of a stretch stimulated threshold that must be attained before mechanosensor mediated changes in cell responses (ATP efflux) are observed. Similarly, the current study may yet to uncover a potential vibrational range that alters gene expression differently than reported. Is there a spectrum of gene expression changes that occurs by changing the range of vibration (Hz, time, cyclical stimulation?). Is there a range in which macrophage differentiation is promoted? Furthermore, the nature of mechanical stimuli (vibration vs stretch vs hydrostatic pressure changes) may alter THP-1 cell's gene expression. The 1000Hz is a standard range used in THP-1 cells thus it is understandable why the current report did not alter it. However, commenting on these issues may help the reader understand the dynamic range of cell responses that have yet to be elucidated. For the current scope of this report additional experiments are not essential (specially as the authors explained the limitation; lines 609-610), however acknowledgement or dismissal of such potential changes using previously published data or inference from data presented by the study should be presented to the reader.
- **3)** It would be informative to compare basal expression levels of key genes in suspended and adherent conditions. For example, do adherent cells express comparably higher levels of PIEZO1 than unstimulated suspended cells? Are the levels of CD14 and CD36 higher in adherent vs suspended cells?
- **4)** Perhaps beyond the scope of the current study, but analysis of protein expression levels of key macrophage differentiation markers (CD14, CD36 etc.) through western blot may strengthen the claims made. The authors could state the need to confirm their key findings at the protein level to corroborate their RT-qPCR data.

Gene expression during THP-1 differentiation is influenced by vitamin D3 and not vibrational mechanostimulation (#58110)

First submission

Guidance from your Editor

Please submit by 29 Mar 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 3 Table file(s)
- 2 Raw data file(s)

Cell line checks

Is the correct provenance of the cell line described?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Gene expression during THP-1 differentiation is influenced by vitamin D3 and not vibrational mechanostimulation

Theodoros Simakou Corresp., 1, Robin Freeburn 2, Fiona Henriquez Corresp. 2

 $Corresponding\ Authors:\ Theodoros\ Simakou,\ Fiona\ Henriquez\\ Email\ address:\ theodoros.simakou@glasgow.ac.uk,\ fiona.henriquez@uws.ac.uk\\$

Background: In tissue injury or infection, monocytes migrate into the affected tissues from circulation and differentiate into macrophages which are subsequently involved in the inflammatory responses. Macrophage differentiation and activation have been studied in response to multiple chemokines and cytokines. However, the physical properties of tissues such as stiffness or pressure, also influence the macrophage differentiation, activation, cytokine production, and phagocytic activity. **Methods:** In this study, the macrophage differentiation from THP-1 monocytes was assessed upon the stimulation with 1,25-dihydroxyvitamin D3 and 1000Hz vibration, using qPCR for quantification of transcript expression. The vitamin D binds the vitamin D receptor (VDR) and subsequently modulates the expression of a variety of genes in monocytes. The effects of the 1000Hz vibrational stimulation, and the combined treatment of vitamin D3 and 1000Hz vibrations were unknown. The differentiation of macrophages was assessed by looking at transcription of macrophage markers (e.g. *CD14*, *CD36*), transcription factors (e.g. *LEF-1*, *TCF7L2*), antigen presenting molecules (e.g. *HLA-DRA*), and mechanosensors (e.g. *PIEZO1* and *PKD2*).

Results: The results showed that the vitamin D3 induced THP-1 macrophage differentiation, which was characterised by upregulation of *CD14* and *CD36*, downregulation of *HLA-DRA*, upregulation of the *PKD2* (*TRPP2*), and an inverse relationship between *TCF7L2* and *LEF-1*, which were upregulated and downregulated respectively. The downregulation of *HLA-DRA* in early differentiation induced by the vitamin D3 could also show predisposition for development of M2 polarised phenotypes. The 1000Hz vibrations were sensed from the cells which upregulated *PIEZO1* and *TCF3*, but they did not induce expression of genes that would indicate macrophage differentiation. The mRNA transcription profile in the cells stimulated with the combined treatment was comparable to that of the cells stimulated by the vitamin only. The 1000Hz vibrations slightly weakened the effect of the vitamin for the regulation of *CD36* and *HLA-DMB* in the suspension cells, but without causing changes in the regulation patterns. The only

list may be useful

PeerJ reviewing PDF | (2021:02:58110:0:1:NEW 17 Feb 2021)

 $^{^{}f 1}$ Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom

² School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom

exception was the upregulation of *TCF3* in the suspension cells, which was influenced by the vibrations. In the adherent cells, the vitamin D3 cancelled the upregulating effect of the 1000Hz vibrations and downregulated *TCF3*. The vitamin also cancelled the upregulation of *PIEZO1* gene by the 1000Hz vibrations in the combined treatment.

For ease of read Add conclusion in abstract

Gene expression during THP-1 differentiation is influenced by vitamin D3 and not vibrational mechanostimulation

3

1

2

Theodoros Simakou¹, Robin Freeburn², Fiona L. Henriquez²,

5 6

- 7 ¹ University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow,
- 8 Lanarkshire, United Kingdom
- 9 ² University of West of Scotland, School of Health and Life Sciences, Paisley, Renfrewshire,
- 10 United Kingdom

11

- 12 Corresponding Author:
- 13 Fiona L. Henriquez
- 14 High Street, Paisley, Renfrewshire, PA1 2BE, United Kingdom
- 15 Email address: fiona.henriquez@uws.ac.uk

16 17

Abstract

- 18 **Background:** In tissue injury or infection, monocytes migrate into the affected tissues
- 19 from circulation and differentiate into macrophages which are subsequently involved in
- 20 the inflammatory responses. Macrophage differentiation and activation have been
- 21 studied in response to multiple chemokines and cytokines. However, the physical
- 22 properties of tissues such as stiffness or pressure, also influence the macrophage
- 23 differentiation, activation, cytokine production, and phagocytic activity.
- 24 **Methods:** In this study, the macrophage differentiation from THP-1 monocytes was
- assessed upon the stimulation with 1,25-dihydroxyvitamin D3 and 1000Hz vibration,
- 26 using qPCR for quantification of transcript expression. The vitamin D binds the vitamin
- 27 D receptor (VDR) and subsequently modulates the expression of a variety of genes in
- 28 monocytes. The effects of the 1000Hz vibrational stimulation, and the combined
- 29 treatment of vitamin D3 and 1000Hz vibrations were unknown. The differentiation of
- 30 macrophages was assessed by looking at transcription of macrophage markers (e.g.
- 31 CD14, CD36), transcription factors (e.g. LEF-1, TCF7L2), antigen presenting molecules
- 32 (e.g. HLA-DRA), and mechanosensors (e.g. PIEZO1 and PKD2).
- 33 **Results:** The results showed that the vitamin D3 induced THP-1 macrophage
- 34 differentiation, which was characterised by upregulation of CD14 and CD36,
- 35 downregulation of *HLA-DRA*, upregulation of the *PKD2* (*TRPP2*), and an inverse
- 36 relationship between *TCF7L2* and *LEF-1*, which were upregulated and downregulated
- 37 respectively. The downregulation of *HLA-DRA* in early differentiation induced by the
- vitamin D3 could also show predisposition for development of M2 polarised phenotypes.
- 39 The 1000Hz vibrations were sensed from the cells which upregulated PIEZO1 and
- 40 TCF3, but they did not induce expression of genes that would indicate macrophage

41 differentiation. The mRNA transcription profile in the cells stimulated with the combined 42 treatment was comparable to that of the cells stimulated by the vitamin only. The 43 1000Hz vibrations slightly weakened the effect of the vitamin for the regulation of CD36 and *HLA-DMB* in the suspension cells, but without causing changes in the regulation 44 45 patterns. The only exception was the upregulation of *TCF3* in the suspension cells, 46 which was influenced by the vibrations. In the adherent cells, the vitamin D3 cancelled the upregulating effect of the 1000Hz vibrations and downregulated TCF3. The vitamin 47 also cancelled the upregulation of PIEZO1 gene by the 1000Hz vibrations in the 48 49 combined treatment.

50 51

Introduction

Macrophages play important roles in health and disease through phagocytosis of 52 pathogenic microorganisms, by releasing inflammatory mediators, by inducing and 53 maintaining inflammation, and by removing apoptotic cells and repairing tissues 54 55 (Gordon, 2007; Mosser and Edwards, 2008). Macrophages already present in specific tissue are called tissue-resident macrophages (Lavin et al., 2015). Tissues-resident 56 macrophages are derived from the yolk sac at the embryonic stage, are replicated in 57 58 tissues to maintain cell number, and have different morphology and function depending 59 on the tissue where they reside (Lavin et al., 2015). Such macrophages include the 60 Kupffer cells in the liver and macrophage-like microglia in the nervous system. However, in the case of tissue injury or infection, monocytes derived from bone marrow 61 62 circulating in peripheral blood migrate to the affected tissues where they differentiate into macrophages, and are subsequently involved in the inflammatory response (Shi 63 64 and Pamer, 2011). THP-1 cells are human immortalised monocytes derived from acute monocytic 65 leukaemia and have been extensively used to study macrophage differentiation, 66 67 functions, signalling pathways, and nutrient and drug transport (Chanput, Mes and 68 Wichers, 2014; Bosshart and Heinzelmann, 2016). In this study we investigate the THP-1 responses towards stimulation with vitamin D3 (1,25-dihydroxyvitamin D3), 1000Hz 69 70 nanovibrations or both, in order to study the expression of genes that could indicate 71 differentiation or mechanosensitivity changes in these cells. In the following text, the 72 combined treatment refers to the combination of 50 nM vitamin D3 and 1000Hz vibrations. The cell responses were investigated in both adherent and suspension THP-73 74 1 monocytes upon each stimulation, in order to avoid any confusion in results due to potential differences between the cell types within the same population. 75 76 Vitamin D has been shown to promote monocyte differentiation into macrophages and targets multiple genes (Nurminen, Seuter and Carlberg, 2019). The active form of 77 vitamin D, 1,25-dihydroxyvitamin D3, is a lipophilic molecule which easily passes 78 through biological membranes and binds with high-affinity to the receptor and 79 transcription factor vitamin D receptor (VDR), which is primarily located in the nucleus 80

(Haussler et al., 2013). The activation of vitamin D target genes is explained by the 81 chromatin model (Nurminen, Seuter and Carlberg, 2019). The ligand-activated VDR 82 83 molecules bind to a wide variety of enhancer regions that carry suitable binding motifs and are located within accessible chromatin. With the help of pioneer factors, such as 84 85 PU.1, CEBPA, and GABPA, VDR increases the accessibility of chromatin at and around these enhancer regions (Seuter, Neme and Carlberg, 2017, 2018; Nurminen et al., 86 2019). In THP-1 cells, 1,25-dihydroxyvitamin D3 stimulation significantly affects the 87 binding strength of transcription factor CTCF to topologically associating domain (TAD) 88 89 anchors, which results in about 600 TADs becoming sensitive of vitamin D (Neme, Seuter and Carlberg, 2016). Looping of activated DNA-bound VDR to a transcription 90 start site (TSS) at these promoter regions results in increased chromatin accessibility as 91 92 well as of H3K27ac and H3K4me3 marks (Seuter, Neme and Carlberg, 2016; Nurminen et al., 2019). All these vitamin D-triggered changes in the local chromatin structure at 93 94 enhancer and promoter regions finally lead to the activation of RNA polymerase II assembled on the respective TSSs and the start of mRNA synthesis. The vitamin may 95 also affect gene expression by increasing the expression and the activity of transcription 96 97 factors other than VDR, such as BCL6, NFE2, POU4F2, and ELF4 (Nurminen et al., 98 2015). 99 The effects of vitamin D have been studied in the context of macrophage differentiation from monocytes, but they are also extended into the effector macrophage responses 100 101 (Hewison, 2010). In fact, normal human macrophages are able to synthesize 1,25dihydroxyvitamin D3 when stimulated with interferon gamma (IFNy) (Phillip Koeffler et 102 103 al., 1985). The vitamin D is involved in the regulation of T cell and macrophage effector functions, primary via localized autocrine or paracrine synthesis of 1,25-104 105 dihydroxyvitamin D3 from its precursor 25-hydroxyvitamin D₃ (Hewison, 2010). In 106 addition, vitamin D deficiency is prevalent in multiple autoimmune diseases, such as 107 multiple sclerosis, type 1 diabetes, systemic lupus erythematosus, and alopecia areata, and it is highly associated with the risk of autoimmunity (Yang et al., 2013; Lin, Meng 108 109 and Song, 2019). Vitamin D has been implicated in prevention and protection from autoimmune diseases by immunomodulation of macrophage, dendritic cell, and T cell 110 111 responses (Hewison, 2010; Yang et al., 2013). 112 In the recent years, interest has been given to the mechanobiology of macrophages, 113 which like other immune cells have evolved mechanisms to perceive and respond to the mechanical forces around them (Kim et al., 2019). The cellular functions of tissue-114 115 resident macrophages and monocyte-derived macrophages are affected by the tissuespecific microenvironment, which can create many types of mechanical stress on cells 116 117 (McWhorter, Davis and Liu, 2015; Mennens, van den Dries and Cambi, 2017). Stiffness and topography, which are mechanical properties of the extracellular matrix, regulate 118 the differentiation, proliferation, and function of macrophages such as phagocytosis 119 120 (Patel et al., 2012). In monocytes, the PIEZO1 mechanotransduction in response to

21	cyclical hydrostatic pressure, results in HIF1α stabilization and secretion of molecules,
22	such as endothelin-1 (EDN1), and neutrophil chemoattractant CXCL2 (Solis et al.,
23	2019). In addition, macrophages in tissues are exposed to alterations of pressure which
24	affect the secretion of cytokines such as IL-6, TNF-α and IL-1β, (Ferrier et al., 2000;
25	Mevoy et al., 2002). Other mechanical forces that these cells experience originate from
26	dynamic mechanical loading, such as continuous and cyclic stretch and compression
27	(McWhorter, Davis and Liu, 2015; Mennens, van den Dries and Cambi, 2017).
28	Just like normal monocytes, THP-1 cells have shown to respond to mechanical
29	stressors. For example, in models of atherosclerosis, biomechanical strain on THP-1
30	cells can induce expression of the class A scavenger receptor, an important lipoprotein
31	receptor in atherogenesis (Yamamoto, Ikeda and Shimada, 2003). In addition, DNA
32	microarray analysis has shown that cyclic mechanical strain in THP-1 cells induces
33	expression of genes, some encoding for inflammatory markers such as IL-8 and IEX-
34	1(Yamamoto, Ikeda and Shimada, 2003). In these cells, biomechanical deformation
35	influences the degradation of extracellular matrix, monocyte differentiation, and
36	promotion of atherosclerosis (Yamamoto, Ikeda and Shimada, 2003). In addition, as
37	THP-1 cells differentiate they become adherent, a process which may be result in
38	altered mechanosensitivity (Tsuchiya et al., 1982; Schwende et al., 1996)
39	In this study the cells were mechanically stimulated using 1000Hz vibrations. The
40	vibrational 1000Hz stimulation has been used to study in vitro osteoblast differentiation
41	with successful results (Nikukar et al., 2013; Pemberton et al., 2015; Tsimbouri, 2015;
42	Robertson et al., 2018), and in this study it was used to investigate any effect it may
43	have on the differentiation of macrophages from THP-1 monocytes.
44	Overall, the experiments of this study were designed to give an insight into the
45	differentiation process of THP-1 monocytes into macrophages under different
46	stimulation parameters, compare between treatments, and look into mechanosensor
47	mRNA expression.
48	
49	
50 51	
52	
53	
54	
55	
56	
57	
58	Materials & Methods
59	THP-1 monocyte growth

- 160 THP-1 cells (ATCC® TIB-202™) were reconstituted from -80°C storage and allowed to
- recover for 2 weeks in cultures, splitting when confluency reached around 8x10⁵
- 162 cells/mL. The culture medium needed for cell growth was composed of RPMI-1640 with
- 163 L-glutamine (Capricorn Scientific, RPMI-HA), 10 % Foetal Bovine Serum (FBS) (Gibco,
- A3160802) and 1% Antibiotic-Antimycotic 100X mix (Gibco, 15240062). The cells were
- cultured at 37°C, 5% CO₂ until ready for the experiments.

166 Experimental set up

- The THP-1 cells were collected from T75 flasks (25mL suspension) and pelleted by
- centrifugation at 1500 rpm for 10 minutes. The experiment involved 4 replicates of
- untreated cells, 4 replicates of cells treated with 50nM 1,25-dihydroxyvitamin D3
- 170 (Sigma-Aldrich, D1530), 4 replicates of cells treated with 1000Hz vibrations (amplitude
- 171 range of 30 60 nm), and 4 replicates of cells treated simultaneously with 50nM 1,25-
- dihydroxyvitamin D3 and 1000Hz stimulation. The cells underwent stimulation for 3 days
- 173 (72 hours). The cell density per each replicate at the start of the experiment was
- 174 1.5x10⁵ cells/mL, in 1mL suspension plated on 24-well plates (Thermofisher Scientific,
- 175 142475). The experiments took place at 37°C, 5% CO₂, and 95% air incubator (LEEC
- 176 190D CO₂).

177 Preparation of the vibrational device

- 178 Plates (24-well plates) which would be clamped on the bioreactor had magnet sheets
- 179 (First4Magnets, D-F4MA43MHP) attached 48 hours before the start of the experiment,
- 180 for better adhesion and removal of air pockets with time. In addition, the vibrational
- device (nicknamed Nanokicking bioreactor) was incubated at 37°C for 2 days prior to
- the start of experiments, which was the temperature at which the bioreactor
- displacements were calibrated. Incubation prior to the experiment was also useful for
- avoiding condensation upon immediate translocation of the bioreactor from room
- temperature to incubator environment. The experiments took place in fanless incubator
- 186 LEEC 190D to avoid additional external vibrations. The bioreactors stability and
- 187 generated vibrations were assessed using laser interferometry before the experiments.
- 188 The platform of the bioreactor was generating vibrations of 1000Hz frequency and
- amplitude range 30-60 nm at the time of the experiments.

190 RNA extraction

- 191 The RNA was extracted separately for the suspension and adherent cells. Cell
- 192 suspension was slowly removed and added to sterile RNA-free 1.5mL tubes. The cells
- in suspension were pelleted by centrifugation at 3000 rpm for 5 minutes. The
- supernatant was discarded and 1mL Trizol reagent (Invitrogen, AM9738) was added to
- homogenise the pellet. For the adherent cells, 1mL Trizol reagent was added directly on
- the wells. The lysed cells were homogenised using a 25g syringe. The RNA extraction
- 197 from the lysed cells in Trizol solution was done by separating the agueous phase after
- addition of 0.2mL chloroform and centrifugation at 13000 rpm for 15 minutes at 4°C.
- 199 The RNA was washed with isopropanol and 75% ethanol and stored in 30µL of

- 200 nuclease-free water (Gibco, 10977035). Quantification of the RNA in ng/µL was done on
- 201 Nanodrop 1000, using the RNA nucleic acid programme.
- 202 **DNase treatment**
- 203 The DNase treatment was performed following the protocol of DNA-free Kit
- 204 (Thermofisher Scientific, AM1906), in order to degrade any genomic DNA that
- 205 contaminated the RNA solutions during extraction. The maximum RNA concentration for
- 206 each sample was 5µg per 50µL DNase reaction. Removal of genomic DNA
- 207 contamination allowed efficient detection of amplification during the real-time PCR.
- 208 Complementary DNA synthesis
- 209 The synthesis of cDNA was done as instructed on the protocol of High-Capacity cDNA
- 210 Reverse transcription Kit (Applied Biosystems, 4368814). The reaction was comprised
- 211 of 10µL of 2X RT Mastermix and 10µL of purified RNA solution from the previous step.
- 212 Reaction was started by warming at 25°C for 10 minutes, followed by incubation at 37°C
- 213 for 2 hours for the synthesis of the cDNA, and termination of reaction at 85°C for 5
- 214 minutes. The newly synthesised cDNA was stored at -20°C until used for PCR
- 215 reactions.
- 216 Real-time PCR
- 217 Real-time PCR was used to quantify gene expression in adherent and suspension THP-
- 218 1 cells. The PCR amplifications were performed in 25µL reactions containing 12.5µL
- 219 PowerUP SYBR Green Mastermix (Applied BiosystemsTM, A25742); 0.5µL Forward
- 220 Primer and 0.5µL Reverse Primer for the respective genes, 1µL of cDNA and topped up
- to 25µL with nuclease free water (Gibco, 10977035).
- The primer pair used for amplification of the housekeeper RPL37A were RPL37A
- 223 forward 5'-ATTGAAATCAGCCAGCACGC-3' and RPL37A reverse 5'-
- 224 AGGAACCACAGTGCCAGATCC-3'. The primer pair used for amplification of the
- 225 housekeeper ACTB were ACTB forward 5'-ATTGCCGACAGGATGCAGAA-3' and
- 226 ACTB reverse 5'-GCTGATCCACATCTGCTGGAA-3'. The primer pair used for
- 227 amplification of *CD36* were *CD36* forward 5'-TCACTGCGACATGATTAATGGTACA-3'
- 228 and CD36 reverse 5'-ACGTCGGATTCAAATACAGCATAGAT-3'. The primer pair used
- 229 for amplification of CD14 were CD14 forward 5'-ACGCCAGAACCTTGTGAGC-3' and
- 230 *CD14* reverse 5'-GCATGGATCTCCACCTCTACTG-3'. The primer pair for amplification
- 231 of HLA-DRA were HLA-DRA forward 5'-TAAGGCACATGGAGGTGATG-3' and HLA-
- 232 DRA reverse 5'-GTACGGAGCAATCGAAGAGG-3'. The primer pair used for
- 233 amplification of *HLA-DMB* were *HLA-DMB* forward 5'-CTCTCACAGCACCTCAACCA-3'
- and HLA-DMB reverse 5'-TAGAAGCCCCACACATAGCA-3'. The primer pair used for
- 235 amplification of *PIEZO1* were *PIEZO1* forward 5'-CATCTTGGTGGTCTCTGTCT-3'
- 236 and PIEZO1 reverse 5'-CTGGCATCCACATCCCTCTCATC-3'. The primer pair used for
- 237 detection of *PKD1* were *PKD1* forward 5'-CGCCGCTTCACTAGCTTCGAC-3' and
- 238 *PKD1* reverse 5'-ACGCTCCAGAGGGAGTCCAC-3'. The primer pair used for
- 239 amplification of *PKD2* were *PKD2* forward 5'-GCGAGGTCTCTGGGGAAC-3' and *PKD2*

- reverse 5'-TACACATGGAGCTCATCATGC-3'. The primer pair used for amplification of
- 241 NFAT2 were NFAT2 forward 5'-CACTCCTGCTGCCTTACACA-3' and NFAT2 reverse
- 242 5'-AAGATGCGAGCATGCGACTA-3'. The primer pair used for amplification of *TCF*3
- 243 were TCF3 forward 5'-TGACCTCCTGGACTTCAGC-3' and TCF3 reverse 5'-
- 244 ACCTGAACCTCCGAACTGC-3'. The primer pair used for amplification of *TCF4* were
- 245 TCF4 forward 5'-AGTGCGATGTTTTCACCTCC-3' and TCF4 reverse 5'-
- 246 CCTGAGCTACTTCTGTCTTC-3'. The primer pair used for the amplification of TCF7L2
- 247 were TCF7L2 forward 5'-CCGGGAAAGTTTGGAAGAAG-3' and TCF7L2 reverse 5'-
- 248 ACTGAAAATGGAGGTTCGG-3'. The primer pair used for amplification of *LEF-1*
- 249 were LEF-1 forward 5'-GACAGTGACCTAATGCACGT-3' and LEF-1 reverse 5'-
- 250 CCACCTTCTGCCAAGAATCT-3'.
- 251 The primers for TCFs and LEF-1 transcription factors were generously provided by Dr.
- 252 Robin Freeburn. Primers amplifying *PIEZO1* were designed using the NCBI primer
- design tool for the mRNA sequence NM 001142864.4, and primers amplifying CD14
- were designed similarly for the mRNA sequences NM 001174105.2 (CD14 mRNA
- 255 transcript variant 4), NM 001040021.3 (CD14 mRNA transcript variant 2),
- 256 NM 000591.4 (CD14 mRNA transcript variant 1) and NM 001174104.1 (CD14 mRNA
- 257 transcript variant 3). The primers for *NFAT2* were obtained from Dagna et al. (Dagna,
- 258 Pritchett and Lusso, 2013), primers for HLA-DRA and HLA-DMB were obtained from
- 259 Ulbricht et al. (Ulbricht et al., 2012), primers for PKD1 and PKD2 were obtained from
- 260 Dalagiorgou et al. (Dalagiorgou et al., 2013), and primers from CD36, ACTB and
- 261 RPL37A were obtained from Maeß et al. (Maeß, Sendelbach and Lorkowski, 2010).
- 262 The efficiency of primers taken from existing literature has been assessed in published
- papers (Fukuda, Mitsuoka and Schmid-Schönbein, 2004; Maeß, Sendelbach and
- 264 Lorkowski, 2010; Ulbricht et al., 2012; Dagna, Pritchett and Lusso, 2013; Dalagiorgou et
- 265 al., 2013). The primer efficiency was assessed prior to the experiments and was around
- 266 97% for all the investigated genes. Similar PCR efficiency for each primer is necessary
- 267 for relative quantification using the $\Delta\Delta C_T$ method (Livak and Schmittgen, 2001). The
- 268 PCR efficiency was also assessed by melt curve analysis. The collected C_T values were
- used for the $\Delta\Delta C_T$ relative quantification of expression, comparing the stimulated cells
- 270 to the untreated controls. The ΔC_T was obtained by comparison of CTs of genes of
- interest to the mean C_T of two housekeeping genes *RPL37A* and *ACTB*. These
- 272 housekeeping genes are considered to be the best for the analysis of RNA expression
- in THP-1 cells (Maeß, Sendelbach and Lorkowski, 2010).

274 Statistical analysis

- 275 The gene expression data are presented as mean of four replicates ± SEM, with little
- 276 exception where some particular genes were not detected in all replicates. The analysis
- 277 of statistical significance between the stimulated cells versus controls, and between
- each type of stimulation was done using unpaired T test with Welch's correction.

- 279 Statistical analysis was carried out using GraphPad Prism® version 6. P values <0.05
- were accepted as significant.
- 281 **Results**

202 283 284	molecules
285	Stimulation with vitamin D3, which also served as a positive control for the induction of
286	differentiation, resulted in upregulation of the <i>CD14</i> and <i>CD36</i> mRNA in both adherent
287	and suspension cells (Error! Reference source not found., A; Error! Reference
288	source not found., A). The vitamin D3 downregulated the <i>HLA-DRA</i> expression in
289	adherent and suspension cells (Error! Reference source not found., A; Error!
290	Reference source not found. , A). The mRNA of <i>HLA-DMB</i> was upregulated for
291	vitamin D3 stimulation in suspension cells (Error! Reference source not found., A).
292	The <i>HLA-DMB</i> was not regulated in response to the vitamin D3 in the adherent cells
293	(Error! Reference source not found., A).
294	The 1000Hz stimulation caused upregulation of CD36 and downregulation of HLA-DMB
295	in suspension cells (Error! Reference source not found., B), whereas in adherent
296	cells it only downregulated the <i>HLA-DRA</i> (Error! Reference source not found., B).
297	The combined stimulation induced upregulation of <i>CD14</i> and <i>CD36</i> in both adherent
298	and suspension cells (Error! Reference source not found., C; Error! Reference
299	source not found., C). The HLA-DRA was downregulated in both cell types compared
300	to the respective unstimulated control (Error! Reference source not found., C; Error!
301	Reference source not found., C), whereas HLA-DMB was upregulated in suspension
302	cells (Error! Reference source not found., C).
303	A comparison between the retreatments was performed for these genes in suspension
304	and adherent cells (Error! Reference source not found., A; Error! Reference source
305	not found., A).
306	CD14 was upregulated in response to the vitamin D3, as the mRNA levels were
307	comparable to the cells stimulated by the vitamin only. Similarly, the upregulation of
308	CD36 in the adherent cells was only in response to the vitamin D3 in the combined
309	treatment. In suspension cells undergoing the combined treatment, the 1000Hz
310	stimulation weakened the upregulation of CD36 by the vitamin D3, which was still higher
311	than the upregulation caused by the 1000Hz vibrational stimulation alone. In the
312	combined treatment, the 1000Hz vibrations also weakened the upregulation of HLA-
313	DMB by the vitamin in the suspension cells. Interestingly, the HLA-DRA was
314	downregulated from all treatments at the same level in the adherent cells.
315	
316	Regulation of genes encoding transcription factor
317	
318	The stimulation with vitamin D3 downregulated NFAT2 and TCF3 in adherent cells
319	(Error! Reference source not found., A). The TCF4 and LEF-1 were downregulated in
320	both adherent and suspension cells stimulated with the vitamin (Error! Reference
321	source not found., A; Error! Reference source not found., A). The TCF7L2 mRNA

- was upregulated in response to the stimulation with vitamin D3 in adherent and
- 323 suspension cells (Error! Reference source not found., A; Error! Reference source
- 324 **not found.**, A).
- 325 The 1000Hz vibrational stimulation upregulated *TCF3* in both adherent and suspension
- 326 cells compared to the respective controls (Error! Reference source not found.,B;
- 327 Error! Reference source not found., B). This type of stimulation also downregulated
- 328 NFAT2 in the adherent cells (Error! Reference source not found., B). The mRNA
- 329 expression of *TCF4*, *TCF7L2* and *LEF-1* were not affected by the vibrational stimulation
- 330 (Error! Reference source not found., B; Error! Reference source not found., B).
- 331 The combined stimulation downregulated *NFAT2* in both adherent and suspension cells
- 332 (Error! Reference source not found., C; Error! Reference source not found., C).
- 333 The TCF3 mRNA was downregulated in the adherent cells (Error! Reference source
- 334 **not found.**,C), but upregulated in the suspension cells (**Error! Reference source not**
- found., C). The *TCF4* was downregulated in both cell types, and *TCF7L2* was
- upregulated in both cell types (Error! Reference source not found., C; Error!
- 337 **Reference source not found.**, C). The *LEF-1* was downregulated in the suspension
- 338 cells (Error! Reference source not found., C).
- 339 A comparison between the treatments was performed for these genes encoding
- transcription factors in the suspension (Error! Reference source not found., B) and
- 341 adherent cells (Error! Reference source not found., B).
- 342 The NFAT2 mRNA was downregulated in adherent cells for all the treatments, without
- 343 difference between each other. In the suspension cells, the NFAT2 was downregulated
- 344 only for the combined stimulation.
- In adherent cells, the TCF3 mRNA was downregulated in response to vitamin D3 but
- 346 upregulated for the 1000Hz stimulation. In the adherent cells, the vitamin cancelled the
- 347 upregulating effect of the 1000Hz vibration and downregulated TCF3, at comparable
- levels to the cells stimulated with vitamin D3 only. However, in suspension cells, the
- 349 TCF3 upregulation was influenced by the 1000Hz vibrations, and the mRNA levels were
- comparable to the cells stimulated with the 1000Hz vibrations alone.
- 351 The *TCF4* mRNA was downregulated in response to vitamin D3 stimulation in both
- 352 suspension and adherent cells. In the combined treatment, *TCF4* was influenced by the
- 353 vitamin only. The 1000Hz did not have any influence on the expression of this gene
- neither alone or in combination with the vitamin. Similarly, the upregulation of *TCF7L2*
- 355 mRNA was influenced only by the vitamin D3 in both adherent and suspension cells,
- with the 1000Hz stimulation having no effect on the cells when applied alone or in
- 357 combination with the vitamin
- 358 The mRNA for LEF-1 was downregulated in response to vitamin D3 stimulation. In the
- 359 adherent cells little RNA was obtained for this gene, and no amplification was detected
- 360 for the 1000Hz stimulation. This needs to be investigated in the future to explain
- whether the lack of amplification was due to very low transcripts levels in total RNA, or

because of some inhibitory effect that 1000Hz vibrations may have. In the suspension cells stimulated with the combined treatment, the 1000Hz weakened the downregulating effect of the vitamin D3, however the vitamin influenced the downregulation.

365366

Regulation of genes encoding mechanosensors PIEZO1, PKD1 and PKD2

367

- The stimulation with the vitamin D3 resulted in upregulation of *PKD2* (*TRPP2*) mRNA in both adherent and suspension cells. The stimulation with the vitamin D3 alone did not
- affect the expression of PIEZO1 or PKD1 (TRPP1) (Error! Reference source not
- 371 found., A Error! Reference source not found., A).
- 372 The 1000Hz vibrational stimulation resulted in upregulation of *PIEZO1* mRNA in both
- 373 adherent and suspension cells. In the adherent cells, the stimulation downregulated
- 374 *PKD2* mRNA. The vibrational stimulation did not affect *PKD1* expression (**Error!**
- 375 Reference source not found., B Error! Reference source not found., B).
- 376 The combined treatment resulted in the upregulation of *PKD2* mRNA in both adherent
- and suspension cells. PIEZO1 and PKD1 were not regulated in cells stimulated with the
- 378 combined treatment (Error! Reference source not found., C Error! Reference
- 379 source not found., C).
- 380 A comparison between treatments was performed for these genes encoding
- mechnosensors in the suspension (Error! Reference source not found., C) and
- adherent cells (Error! Reference source not found., C).
- 383 The expression of *PKD2* was affected only by the vitamin D3, which also cancelled the
- downregulation effect of the 1000Hz in the adherent cells stimulated with the combined
- 385 treatment.
- The *PIEZO1* upregulation occurred only in response to the stimulation with 1000Hz
- 387 vibrations, but in the combined treatment the vitamin cancelled the upregulating effect of
- 388 the vibrational stimulation
- The expression of *PKD1* mRNA was not affected by any of the stimulation methods.

390 391

Discussion

392 393

TCF/LEF pathway and gene nomenclature

- 395 TCF/LEF pathway plays roles in monocyte and macrophage differentiation (Thiele *et al.*, 2001).
- 396 It must be mentioned that some confusion exists about the nomenclature of the TCFs. The
- 397 mammalian TCF/LEF family comprises of four nuclear factors designated TCF7, LEF1, TCF7L1,
- 398 and TCF7L2, which are also known as TCF1, LEF1, TCF3, and TCF4, respectively (Hrckulak et
- 399 al., 2016). Confusion also exists between the nomenclature of genes and the corresponding
- 400 products. For example, a gene called TCF3 (NCBI gene ID: 6929), also known as E2A,
- 401 encodes a product that is different from TCF3 encoded from TCF7L1 (NCBI Gene ID: 83439).
- 402 Similarly, TCF4 (NCBI gene ID: 6925), encodes for TCF4 which is a different protein from the

TCF4 encoded from *TCF7L2* (NCBI Gene ID: 6934). In this experiment, the mRNA investigated belongs to genes *TCF3* (E2A), *TCF4* (E2-2), *TCF7L2* and *LEF-1*, with the last two investigated in the context of WNT canonical pathways in monocyte-derived macrophages (Malsin *et al.*, 2019). The pathways which involve *TCF3* and *TCF4* gene products can be complex and are not elucidated in context of monocyte to macrophage differentiation.

408 409

Vitamin D3 induced macrophage differentiation and downregulated HLA-DRA

- The vitamin D3 has shown to target multiple monocyte genes and promote monocyte differentiation into macrophages (Nurminen, Seuter and Carlberg, 2019). Similarly, this
- 413 study demonstrated that vitamin D3 stimulation induced differentiation of THP-1
- 414 monocytes into macrophages, when looking at transcriptional regulation of CD14, CD36
- and transcription factors *TCF7L2* (encoding TCF4) and *LEF-1*.
- 416 The stimulation with vitamin D3 resulted in upregulation of the CD14 and CD36 mRNA
- 417 in both adherent and suspension cells. This pattern of regulation for these two genes
- 418 was expected to occur during macrophage differentiation from monocytes (Zhang et al.,
- 419 1994; Maeß, Sendelbach and Lorkowski, 2010). The CD14 is an important marker of
- 420 the THP-1 differentiation into macrophages which upregulates strongly upon vitamin D3
- 421 stimulation (Schwende et al., 1996; Gocek et al., 2012), as was also observed in this
- study. Furthermore, CD14 and CD36 are primary target genes for vitamin D3 in THP-1
- 423 monocytes (Nurminen, Seuter and Carlberg, 2019). The CD14 and CD36 are proteins
- 424 involved in macrophage functions. CD14 cooperates with other proteins to mediate the
- 425 innate immune response to bacterial lipopolysaccharide, whereas CD36 is a scavenger
- 426 receptor involved in phagocytosis (Woo et al., 2016).
- The vitamin D3 downregulated the expression of *HLA-DRA* in differentiating THP-1
- 428 cells. Downregulation of the HLA-DR protein has been observed in primary monocytes
- treated with vitamin D3 (Tokuda and Levy, 1996), as well as in dendritic cells (Ferreira
- 430 et al., 2015). In dendritic cells, the downregulation of HLA-DR has been suggested to be
- part of tolerance processes induced by vitamin D3 signalling (Ferreira et al., 2015). The
- 432 HLA-DRA downregulation in this study was an interesting observation which agreed
- with the observed immunomodulatory effects of the vitamin D (Yang et al., 2013).
- In addition, the vitamin D3 stimulation upregulated the mRNA of *HLA-DMB* in
- 435 suspension cells. This molecule is important for antigen loading of the MHC class II by
- 436 removal of CLIP from HLA-DR (Riberdy et al., 1992; Sloan et al., 1995). In one study,
- 437 HIV-infected THP-1 monocytes had loss of mRNA for HLA-DR, but the mRNAs for HLA-
- 438 DM continued to be transcribed, showing that genes may have non-corresponding
- 439 expression patterns (Shao and Sperber, 2002), similar to what was observed in this
- 440 study.
- This study also identified an inverse relationship between *TCF7L2* and *LEF-1* mRNA
- regulation upon vitamin D3-induced macrophage differentiation. The TCF7L2 (encoding
- 443 TCF4) in combination with β-catenin forms a complex that regulates expression of

- genes in monocytes and it is thus involved in the differentiation process (Thiele et al., 444 2001; Tickenbrock, 2006; Malsin et al., 2019), whereas LEF-1 facilitates nuclear 445 localisation of β-catenin and enhances proliferation in acute myeloid leukaemia cells. 446 including THP-1 cells (Morgan et al., 2019). Therefore, the downregulation of LEF-1 and 447 448 the upregulation of TCF7L2 could indicate decreased proliferation and increased 449 differentiation as THP-1 monocytes become macrophages (Schwende et al., 1996; Thiele et al., 2001; Morgan et al., 2019). The inverse relationship of TCF7L2 and LEF-1 450 has also been related to shifts in differentiation and proliferation states in other cancer 451 452 cells (Kriegl et al., 2010; Eichhoff et al., 2011). This pattern of regulation for these two genes can be signature of THP-1 monocyte to macrophage differentiation. 453 Another transcription factor downregulated in adherent cells in response to the vitamin 454 D3 was NFAT2. The NFATs are important transcription factors for production of 455 proinflammatory cytokines in T and B cells (Macian, 2005), but their roles are not only 456 457 limited to the adaptive immune cells. It has been showed that the NFATs are required for Toll-like receptor (TLR)-initiated innate immune responses in bone marrow-derived 458 macrophages (Minematsu et al., 2011). In THP-1 monocytes in vitro, the NFAT2 has 459 shown to inhibit the release of high mobility protein box-1 (HMGB1) (Zhao Q et al., 460 461 2016), a proinflammatory protein with roles in inflammation and autoimmunity (Magna and Pisetsky, 2014). The suppression of NFAT2 expression by siRNA has resulted in 462 increased HMGB1 in the supernatant of cells (Zhao Q et al., 2016). In T cells, 1,25-463 dihydroxyvitamin D3 and its receptor complex (VDR-RXR) have shown to inhibit NFAT 464 activity (Wöbke, Sorg and Steinhilber, 2014), but its effect on monocytes and NFAT2 465 466 mRNA are not known. In this study, the downregulation of NFAT2 mRNA in the adherent cells, which are considered to be in a more advanced stage of differentiation 467 than the suspension cells (Tsuchiya et al., 1982; Schwende et al., 1996), could be 468
- related to the production of proinflammatory proteins after the maturation of the monocytes into macrophages.

 The vitamin D3 stimulation also downregulated *TCF3* (encoding E2A) in adherent cells,
- and *TCF4* (encoding E2-2) in both cell types compared to the respective controls. The roles of the products of these genes are not known in monocyte biology and macrophage differentiation, but as demonstrated in this study they are regulatable upon
- 475 vitamin D3 stimulation.

 476 The stimulation with vitamin D3 had no effect on the regulation of *PIF7O1* or *PKD1* but
- The stimulation with vitamin D3 had no effect on the regulation of *PIEZO1* or *PKD1*, but it upregulated *PKD2* (*TRPP2*) mRNA in both suspension and adhesion cells. The roles of polycystin 2 (product of *PKD2*) are not known in THP-1 monocytes, but this study demonstrated that the *PKD2* mRNA upregulation is signature of vitamin D3-induced differentiation.

481

Monocyte responses to 1000Hz vibrational stimulation

The THP-1 monocytes are responsive to mechanical stressors. Biomechanical strain on 484 THP-1 cells can induce expression of the class A scavenger receptor, degradation of 485 extracellular matrix, monocyte differentiation, and promotion of atherosclerosis 486 (Yamamoto, Ikeda and Shimada, 2003). In addition, DNA microarray analysis has 487 488 shown that cyclic mechanical strain in THP-1 cells induces expression of genes, some 489 encoding for inflammatory markers such as IL-8 and IEX-1 (Yamamoto, Ikeda and Shimada, 2003). Furthermore, upon differentiation, THP-1 cells become adherent 490 (Tsuchiya et al., 1982; Schwende et al., 1996), which may result in altered 491 492 mechanosensitivity. This study used vibrations as means of mechanical stimulation of these cells in order to study their mechanosensitivity. 493 The vibrational 1000Hz stimulation resulted in upregulation of *PIEZO1* transcripts in 494 both suspension and adhesion cells. PIEZO1 channels are considered professional 495 mechanosensory proteins, capable of sensing and converting mechanical stimuli 496 497 (Zhong et al., 2018). Little is known about the mechanosensory roles of these channels in monocytes and macrophages. PIEZO1 has shown to signal in response to cyclical 498 hydrostatic pressure, resulting in HIF1α stabilization and secretion of molecules, such 499 as endothelin-1 (EDN1), and neutrophil chemoattractant CXCL2 (Solis et al., 2019). The 500 501 PIEZO1 signalling to the cyclical pressure has induced inflammation and infiltration of monocytes, which recruit neutrophils in order to clear pulmonary *Pseudomonas* 502 aeruginosa infection via EDN1 (Solis et al., 2019). In this study, we demonstrate that 503 THP-1 cells regulated PIEZO1 mRNA in response to 1000Hz vibrational stimulation, but 504 505 the biological significance of such regulation remains to be elucidated. 506 The 1000Hz stimulation also caused *HLA-DRA* downregulation in adherent cells similar to vitamin D3, but when combined with the vitamin it did not show any synergetic effect. 507 Another gene which was upregulated during the stimulation with 1000Hz vibrations, was 508 509 TCF3. This gene was upregulated in both suspension and adherent cells, but the role of 510 this gene and its products are not known in monocytes. The 1000Hz vibrations downregulated the NFAT2 mRNA at the same levels as the vitamin D3 in adherent 511 512 cells, and just like the vitamin it did not regulate this gene in suspension cells. The vibrational stimulation had not effect on the regulation of other transcription factors 513 514 such as TCF4, TCF7L2 and LEF-1, which were influenced by the vitamin D3 only. 515 The upregulation of *PIEZO1* and *TCF3* upon the application of the 1000Hz stimulation was interesting, but it was not associated with macrophage differentiation, because 516 there was no transcriptional regulation for genes such as CD14, TCF7L2 and LEF-1 517 518 which would indicate transition from monocytes to macrophages. The CD36 was upregulated for the 1000Hz stimulation in suspension cells. However, in adherent cells, 519 which are considered to be in a more advanced stage of differentiation (Tsuchiya et al., 520 1982; Schwende et al., 1996), the CD36 mRNA levels were comparable to the 521 unstimulated controls. 522 523

The effects of the combined treatment on gene expression and comparison to vitamin D3 and 1000Hz vibrations

525526

- In the combined treatment, the differentiation into macrophages took place but it was influenced mostly by the vitamin D3.
- 529 The upregulation of CD14 in suspension and adherent cells undergoing the combined
- treatment was comparable to cells stimulated with vitamin D3 only. The *CD36* mRNA was upregulated in the adherent cells at comparable level to the cells stimulated with
- vitamin D3 only. However, in the suspension cells the 1000Hz had slightly weakened
- 533 the upregulation of *CD36* by the vitamin D3. The combination of both stimuli resulted in
- 534 mRNA expression lower than the stimulation with the vitamin, but higher that the
- stimulation with the 1000Hz, hence it could be said that the 1000Hz weakened the
- 536 upregulating effect of the vitamin.
- 537 Even though when applied in isolation the 1000Hz stimulation caused HLA-DRA
- downregulation in adherent cells at similar levels to vitamin D3, in the stimulation it did
- 539 not show any synergetic effect. The downregulation of *HLA-DRA* in suspension cells
- 540 undergoing the combined treatment was comparable to the cells stimulated with the
- vitamin D3 only, showing that in the combined treatment this gene was influenced only
- 542 to the vitamin.
- In the suspension cells undergoing the combined treatment, the 1000Hz weakened the
- 544 upregulation of *HLA-DMB* by the vitamin. When applied in isolation the 1000Hz
- vibrations downregulated HLA-DMB, however, in the combined treatment the vitamin
- overshadowed the effect of the vibrational stimulus and caused upregulation.
- 547 The combined treatment downregulated *NFAT2* at comparable levels to both the
- 548 vitamin D3 and 1000Hz treatments when applied alone in the adherent cells. However,
- 549 in the suspension cells, the 1000Hz and the vitamin D3 may have synergistically caused
- 550 the downregulation of *NFAT2* in suspension cells, because the vitamin and the 1000Hz
- 551 did not regulate this gene when applied in isolation.
- 552 The regulation of TCF4 and TCF7L2 in the cells stimulated with the combined treatment
- was comparable to the cells stimulated with vitamin D3, and the 1000Hz stimulation had
- no effect on these genes in the combined treatment, similar to when it was applied in
- isolation. The 1000Hz vibrations however, weakened the downregulating effect that the
- vitamin had on the mRNA encoding *LEF-1* in the suspension cell. In the adherent cells,
- 557 the LEF-1 mRNA in stimulated with the combined treatment was comparable to the
- unstimulated controls, but since the mRNA for this gene was not detected in cell
- stimulated with vibrations only, comparison could not take place.
- 560 In the presence of the vitamin D3, the effect of 1000Hz stimulation on the regulation of
- 561 PIEZO1 was cancelled in both adherent and suspension cells. Furthermore, in adherent
- 562 cells, the vitamin D3 cancelled the upregulating effect of 1000Hz on the TCF3 and
- downregulated the gene. However, in suspension cells the 1000Hz stimulation

continued to upregulate TCF3 even in the presence of the vitamin. This was the only case in which the effects of 1000Hz strongly influenced the expression pattern of a gene in the presence of the vitamin.

567 568

564

565

566

569 570

571 572

573

574

575

576

577 578

579

580

581 582

583

584

585

586 587

588

589

590

591

Conclusions

This study demonstrated that the stimulation with 50nM vitamin D3 for 3 days drives macrophage differentiation, as was determined by upregulation of CD14, CD36 and TCF7L2, and downregulation of LEF-1. The differentiation in response to the vitamin D3 was accompanied by downregulation of *HLA-DRA* and upregulation of *PKD2* mRNA. Other genes that were regulated during vitamin D3-induced macrophage differentiation included TCF3 and TCF4 in both suspension and adherent cells, and NFAT2 in adherent cells. The upregulation of the non-selective cation channel PKD2 mRNA could suggest important roles that this mechanosensitive protein has in THP-1 differentiation. The downregulation of HLA-DRA could also be indicative of predisposition to M2-biased phenotype.

The vibrational stimulation which was used for the mechanical stimulation of cells did not induce the macrophage differentiation process because there was no transcriptional regulation of CD14 and TCF/LEF transcription factors. However, the 1000Hz vibrations influenced upregulation of *PIEZO1* and *TCF3* in both adherent and suspension cells. Furthermore, in adherent cells, the vibrational stimulation downregulated NFAT2 and HLA-DRA at comparable levels to the vitamin D3 stimulated adherent cells. This was indicative that while the 1000Hz vibrations did not induce differentiation, they induced regulation of genes in the THP-1 cells. However, the biological importance of such

592 593 response remains to be elucidated.

594

In the combined treatment, the 1000Hz interfered with the regulation of the genes by the

595 vitamin D3 but without changing the regulation patten of these genes. The only

596 exception was TCF3 in suspension cells stimulated with the combined treatment, which

597 was upregulated by the 1000Hz vibrations against the downregulating influence of the vitamin D3. The biological importance of such interference remains to be elucidated. 598

599 However, the mRNA regulation patterns for the majority of the genes in the combined

treatment were in response to the vitamin D3 stimulation. 600

Furthermore, the influence of the 1000Hz stimulus in the presence of the vitamin D3 601

was cancelled (e.g. for PIEZO1 in both cell types), overshadowed (e.g. for CD36 in 602

suspension cells), or cancelled and reversed (e.g. PKD2 in adherent cells). This can 603

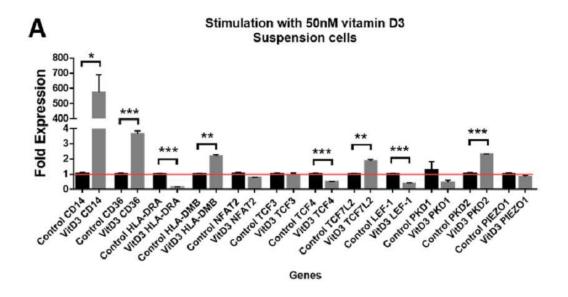
604 605 606 607	have implication for the medicinal application of the 1000Hz (nano-scale amplitude) vibrations, because in inflamed tissues rich in chemical signals such as cytokines and chemokines, the cells may lose the ability to sense and respond to such mechanical stimulus.
608 609 610 611 612 613 614 615 616 617	Further work in necessary to assess the reproducibility of the observations of this study, especially in response to the 1000Hz vibrational stimulation. This study had limitation because of the technology, which was not provided for repeated runs and further work. Larger number of replicates and expanded time-points are recommended for future work from the authors of this report. Overall, this study presents experimental results indicating that the vibrational mechanical forces can be sensed by THP-1 monocytes, but that the chemical ligands such as vitamin D3 remain superior for the induction of macrophage differentiation.
618	A also and a decomposite
619 620 621 622 623 624	Acknowledgements The authors would like to thank the University of the West of Scotland and Alopecia UK for financially supporting the experiments of this study. The authors would also like to thank Dr Paul Campsie and Prof. Stuart Reid for providing a "Nanokick" bioreactor for the vibrational stimulation of the cells.
625	
626 627	
628	References
629 630 631 632 633	Bosshart, H. and Heinzelmann, M. (2016) 'THP-1 cells as a model for human monocytes', <i>Annals of Translational Medicine</i> , 4(21), pp. 438–438. doi: 10.21037/atm.2016.08.53. Chanput, W., Mes, J. J. and Wichers, H. J. (2014) 'THP-1 cell line: An in vitro cell model for immune modulation approach', <i>International Immunopharmacology</i> , 23(1), pp. 37–45. doi: 10.1016/j.intimp.2014.08.002.
634 635 636 637 638	Dagna, L., Pritchett, J. C. and Lusso, P. (2013) 'Immunomodulation and immunosuppression by human herpesvirus 6A and 6B.', <i>Future virology</i> , 8(3), pp. 273–287. doi: 10.2217/fvl.13.7. Dalagiorgou, G. <i>et al.</i> (2013) 'Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis', <i>Cellular and Molecular Life Sciences</i> . NIH Public Access, 70(1), pp. 167–180. doi: 10.1007/s00018-012-
639 640 641 642	1164-5. Eichhoff, O. M. <i>et al.</i> (2011) 'Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching', <i>Pigment Cell & Melanoma Research</i> , 24(4), pp. 631–642. doi: 10.1111/j.1755-148X.2011.00871.x.

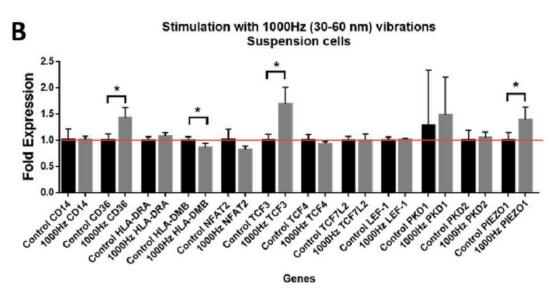
- 643 Ferreira, G. B. et al. (2015) 'Vitamin D3 Induces Tolerance in Human Dendritic Cells by
- Activation of Intracellular Metabolic Pathways', *Cell Reports*, 10(5), pp. 711–725. doi:
- 645 10.1016/j.celrep.2015.01.013.
- 646 Ferrier, G. M. et al. (2000) 'The effect of cyclic pressure on human monocyte-derived
- 647 macrophages in vitro', The Journal of Bone and Joint Surgery. British Volume, 82(5), pp. 755-
- 759. Available at: http://journals.bmn.com/medline/search/results?uid=MDLN.20417170.
- 649 Fukuda, S., Mitsuoka, H. and Schmid-Schönbein, G. W. (2004) 'Leukocyte fluid shear response in
- 650 the presence of glucocorticoid', *Journal of Leukocyte Biology*, 75(4), pp. 664–670. doi:
- 651 10.1189/jlb.1003464.
- 652 Gocek, E. et al. (2012) 'Regulation of Leukemic Cell Differentiation through the Vitamin D
- 653 Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein
- 654 Trafficking and Stability', Leukemia Research and Treatment, 2012, pp. 1–11. doi:
- 655 10.1155/2012/713243.
- 656 Gordon, S. (2007) 'The macrophage: Past, present and future', European Journal of
- 657 *Immunology*, 37(S1), pp. S9–S17. doi: 10.1002/eji.200737638.
- 658 Haussler, M. R. et al. (2013) 'Molecular Mechanisms of Vitamin D Action', Calcified Tissue
- 659 *International*, 92(2), pp. 77–98. doi: 10.1007/s00223-012-9619-0.
- 660 Hewison, M. (2010) 'Vitamin D and the Immune System: New Perspectives on an Old Theme',
- 661 Endocrinology and Metabolism Clinics of North America, 39(2), pp. 365–379. doi:
- 662 10.1016/j.ecl.2010.02.010.
- 663 Hrckulak, D. et al. (2016) 'TCF/LEF Transcription Factors: An Update from the Internet
- 664 Resources', Cancers, 8(7), p. 70. doi: 10.3390/cancers8070070.
- 665 Kim, J.-K. et al. (2019) 'Unraveling the Mechanobiology of the Immune System.', Advanced
- 666 healthcare materials, 8(4), p. e1801332. doi: 10.1002/adhm.201801332.
- 667 Kriegl, L. et al. (2010) 'LEF-1 and TCF4 expression correlate inversely with survival in colorectal
- 668 cancer', Journal of Translational Medicine, 8(1), p. 123. doi: 10.1186/1479-5876-8-123.
- 669 Lavin, Y. et al. (2015) 'Regulation of macrophage development and function in peripheral
- 670 tissues', *Nature Reviews Immunology*, 15(12), pp. 731–744. doi: 10.1038/nri3920.
- 671 Lin, X., Meng, X. and Song, Z. (2019) 'Vitamin D and alopecia areata: possible roles in
- pathogenesis and potential implications for therapy.', American journal of translational
- 673 research, 11(9), pp. 5285–5300. Available at: http://www.ncbi.nlm.nih.gov/pubmed/31632510.
- 674 Livak, K. J. and Schmittgen, T. D. (2001) 'Analysis of Relative Gene Expression Data Using Real-
- 675 Time Quantitative PCR and the 2–ΔΔCT Method', Methods, 25(4), pp. 402–408. doi:
- 676 10.1006/meth.2001.1262.
- 677 Macian, F. (2005) 'NFAT proteins: key regulators of T-cell development and function', Nature
- 678 Reviews Immunology, 5(6), pp. 472–484. doi: 10.1038/nri1632.
- 679 Maeß, M. B., Sendelbach, S. and Lorkowski, S. (2010) 'Selection of reliable reference genes
- during THP-1 monocyte differentiation into macrophages', BMC Molecular Biology, 11(1), p. 90.
- 681 doi: 10.1186/1471-2199-11-90.
- 682 Magna, M. and Pisetsky, D. S. (2014) 'The Role of HMGB1 in the Pathogenesis of Inflammatory
- and Autoimmune Diseases', *Molecular Medicine*, 20(1), pp. 138–146. doi:
- 684 10.2119/molmed.2013.00164.
- 685 Malsin, E. S. et al. (2019) 'Macrophages as a Source and Recipient of Wnt Signals', Frontiers in
- 686 *Immunology*, 10. doi: 10.3389/fimmu.2019.01813.

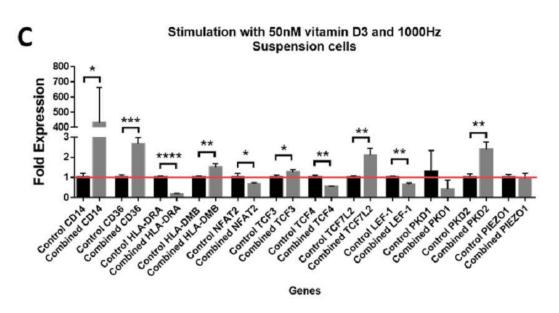
- 687 McWhorter, F. Y., Davis, C. T. and Liu, W. F. (2015) 'Physical and mechanical regulation of
- 688 macrophage phenotype and function', Cellular and Molecular Life Sciences, 72(7), pp. 1303-
- 689 1316. doi: 10.1007/s00018-014-1796-8.
- 690 Mennens, S. F. B., van den Dries, K. and Cambi, A. (2017) 'Role for Mechanotransduction in
- 691 Macrophage and Dendritic Cell Immunobiology', in Results and Problems in Cell Differentiation,
- 692 pp. 209–242. doi: 10.1007/978-3-319-54090-0 9.
- 693 Mevoy, A. et al. (2002) 'Synergistic effect of particles and cyclic pressure on cytokine production
- 694 in human monocyte/macrophages: proposed role in periprosthetic osteolysis', *Bone*, 30(1), pp.
- 695 171–177. doi: 10.1016/S8756-3282(01)00658-5.
- 696 Minematsu, H. et al. (2011) 'Nuclear presence of nuclear factor of activated T cells (NFAT) c3
- and c4 is required for Toll-like receptor-activated innate inflammatory response of
- 698 monocytes/macrophages', Cellular Signalling, 23(11), pp. 1785–1793. doi:
- 699 10.1016/j.cellsig.2011.06.013.
- 700 Morgan, R. G. et al. (2019) 'LEF-1 drives aberrant β-catenin nuclear localization in myeloid
- 701 leukemia cells', *Haematologica*, 104(7), pp. 1365–1377. doi: 10.3324/haematol.2018.202846.
- 702 Mosser, D. M. and Edwards, J. P. (2008) 'Exploring the full spectrum of macrophage activation',
- 703 *Nature Reviews Immunology*, 8(12), pp. 958–969. doi: 10.1038/nri2448.
- Neme, A., Seuter, S. and Carlberg, C. (2016) 'Vitamin D-dependent chromatin association of
- 705 CTCF in human monocytes', Biochimica et Biophysica Acta (BBA) Gene Regulatory
- 706 Mechanisms, 1859(11), pp. 1380–1388. doi: 10.1016/j.bbagrm.2016.08.008.
- 707 Nikukar, H. et al. (2013) 'Osteogenesis of Mesenchymal Stem Cells by Nanoscale
- 708 Mechanotransduction', ACS Nano, 7(3), pp. 2758–2767. doi: 10.1021/nn400202j.
- 709 Nurminen, V. et al. (2015) 'The transcriptional regulator BCL6 participates in the secondary
- 710 gene regulatory response to vitamin D', Biochimica et Biophysica Acta (BBA) Gene Regulatory
- 711 *Mechanisms*, 1849(3), pp. 300–308. doi: 10.1016/j.bbagrm.2014.12.001.
- 712 Nurminen, V. et al. (2019) 'Modulation of vitamin D signaling by the pioneer factor CEBPA',
- 713 Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms, 1862(1), pp. 96–106. doi:
- 714 10.1016/j.bbagrm.2018.12.004.
- 715 Nurminen, V., Seuter, S. and Carlberg, C. (2019) 'Primary Vitamin D Target Genes of Human
- 716 Monocytes', Frontiers in Physiology, 10. doi: 10.3389/fphys.2019.00194.
- 717 Patel, N. R. et al. (2012) 'Cell Elasticity Determines Macrophage Function', PLoS ONE. Edited by
- 718 L. L. Lenz, 7(9), p. e41024. doi: 10.1371/journal.pone.0041024.
- 719 Pemberton, G. D. et al. (2015) 'Nanoscale stimulation of osteoblastogenesis from mesenchymal
- 720 stem cells: nanotopography and nanokicking', Nanomedicine, 10(4), pp. 547–560. doi:
- 721 10.2217/nnm.14.134.
- 722 Phillip Koeffler, H. et al. (1985) 'γ-interferon stimulates production of 1,25-dihydroxyvitamin D3
- 723 by normal human macrophages', Biochemical and Biophysical Research Communications,
- 724 127(2), pp. 596–603. doi: 10.1016/S0006-291X(85)80202-3.
- 725 Riberdy, J. M. et al. (1992) 'HLA-DR molecules from an antigen-processing mutant cell line are
- associated with invariant chain peptides', *Nature*, 360(6403), pp. 474–477. doi:
- 727 10.1038/360474a0.
- 728 Robertson, S. N. et al. (2018) 'Control of cell behaviour through nanovibrational stimulation:
- 729 nanokicking', Philosophical Transactions of the Royal Society A: Mathematical, Physical and
- 730 Engineering Sciences, 376(2120), p. 20170290. doi: 10.1098/rsta.2017.0290.

- 731 Schwende, H. et al. (1996) 'Differences in the state of differentiation of THP-1 cells induced by
- phorbol ester and 1,25-dihydroxyvitamin D 3', Journal of Leukocyte Biology, 59(4), pp. 555–561.
- 733 doi: 10.1002/jlb.59.4.555.
- 734 Seuter, S., Neme, A. and Carlberg, C. (2016) 'Epigenome-wide effects of vitamin D and their
- 735 impact on the transcriptome of human monocytes involve CTCF', Nucleic Acids Research, 44(9),
- 736 pp. 4090–4104. doi: 10.1093/nar/gkv1519.
- 737 Seuter, S., Neme, A. and Carlberg, C. (2017) 'Epigenomic PU.1-VDR crosstalk modulates vitamin
- 738 D signaling', Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms, 1860(4), pp.
- 739 405–415. doi: 10.1016/j.bbagrm.2017.02.005.
- 740 Seuter, S., Neme, A. and Carlberg, C. (2018) 'ETS transcription factor family member GABPA
- 741 contributes to vitamin D receptor target gene regulation', The Journal of Steroid Biochemistry
- 742 *and Molecular Biology*, 177, pp. 46–52. doi: 10.1016/j.jsbmb.2017.08.006.
- 743 Shao, L. and Sperber, K. (2002) 'Impaired Regulation of HLA-DR Expression in Human
- 744 Immunodeficiency Virus-Infected Monocytes', Clinical and Vaccine Immunology, 9(4), pp. 739–
- 745 746. doi: 10.1128/CDLI.9.4.739-746.2002.
- 746 Shi, C. and Pamer, E. G. (2011) 'Monocyte recruitment during infection and inflammation',
- 747 *Nature Reviews Immunology*, 11(11), pp. 762–774. doi: 10.1038/nri3070.
- 748 Sloan, V. S. et al. (1995) 'Mediation by HLA-DM of dissociation of peptides from HLA-DR',
- 749 Nature, 375(6534), pp. 802–806. doi: 10.1038/375802a0.
- 750 Solis, A. G. et al. (2019) 'Mechanosensation of cyclical force by PIEZO1 is essential for innate
- 751 immunity', Nature, 573(7772), pp. 69–74. doi: 10.1038/s41586-019-1485-8.
- 752 Thiele, A. et al. (2001) 'Regulation and Possible Function of β-Catenin in Human Monocytes',
- 753 The Journal of Immunology, 167(12), pp. 6786–6793. doi: 10.4049/jimmunol.167.12.6786.
- 754 Tickenbrock, L. (2006) 'Wnt signaling regulates transendothelial migration of monocytes',
- 755 *Journal of Leukocyte Biology*, 79(6), pp. 1306–1313. doi: 10.1189/jlb.0905539.
- 756 Tokuda, N. and Levy, R. B. (1996) '1,25-Dihydroxyvitamin D3 Stimulates Phagocytosis but
- 757 Suppresses HLA-DR and CD13 Antigen Expression in Human Mononuclear Phagocytes',
- 758 Experimental Biology and Medicine, 211(3), pp. 244–250. doi: 10.3181/00379727-211-43967.
- 759 Tsimbouri, P. (2015) 'Adult Stem Cell Responses to Nanostimuli', Journal of Functional
- 760 *Biomaterials*, 6(3), pp. 598–622. doi: 10.3390/jfb6030598.
- 761 Tsuchiya, S. et al. (1982) 'Induction of Maturation in Cultured Human Monocytic Leukemia Cells
- 762 by a Phorbol Diester', Cancer Research, 42(4), pp. 1530–6.
- 763 Ulbricht, T. et al. (2012) 'PML promotes MHC class II gene expression by stabilizing the class II
- 764 transactivator', The Journal of Cell Biology, 199(1), pp. 49–63. doi: 10.1083/jcb.201112015.
- 765 Wöbke, T. K., Sorg, B. L. and Steinhilber, D. (2014) 'Vitamin D in inflammatory diseases',
- 766 Frontiers in Physiology, 5. doi: 10.3389/fphys.2014.00244.
- 767 Woo, M.-S. et al. (2016) 'Cell Surface CD36 Protein in Monocyte/Macrophage Contributes to
- 768 Phagocytosis during the Resolution Phase of Ischemic Stroke in Mice', Journal of Biological
- 769 *Chemistry*, 291(45), pp. 23654–23661. doi: 10.1074/jbc.M116.750018.
- 770 Yamamoto, K., Ikeda, U. and Shimada, K. (2003) 'Role of Mechanical Stress in Monocytes /
- 771 Macrophages: Implications for Atherosclerosis', Current Vascular Pharmacology, 1(3), pp. 315–
- 772 319. doi: 10.2174/1570161033476565.
- 773 Yang, C.-Y. et al. (2013) 'The Implication of Vitamin D and Autoimmunity: a Comprehensive
- 774 Review', Clinical Reviews in Allergy & Immunology, 45(2), pp. 217–226. doi: 10.1007/s12016-

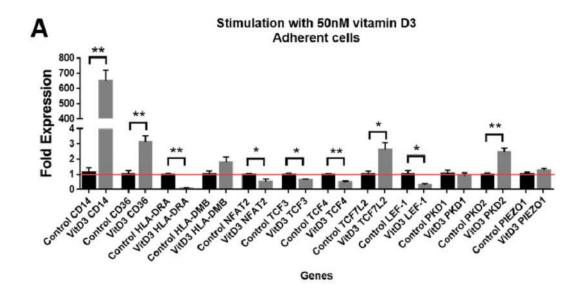
775	013 -	8361	_2
110	OTO_{-}		∟−அ.

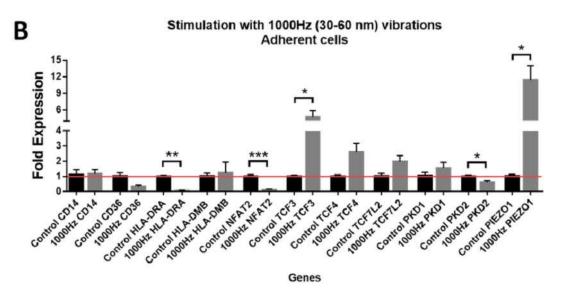

- 776 Zhang, D. E. et al. (1994) 'Regulation of CD14 expression during monocytic differentiation
- 777 induced with 1 alpha,25-dihydroxyvitamin D3.', Journal of immunology (Baltimore, Md.: 1950),
- 778 153(7), pp. 3276–84.
- 779 Zhao Q et al. (2016) '[Role of nuclear factor of activated T cells-2 in high mobility protein box-1
- 780 release in human monocytic THP-1 cells in vitro].', Journal of Southern Medical University
- 781 (Chinese), 36(1), pp. 8–12. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26806731.
- 782 Zhong, M. et al. (2018) 'Mechanosensing Piezo channels in tissue homeostasis including their
- 783 role in lungs', *Pulmonary Circulation*, 8(2), p. 204589401876739. doi:
- 784 10.1177/2045894018767393.

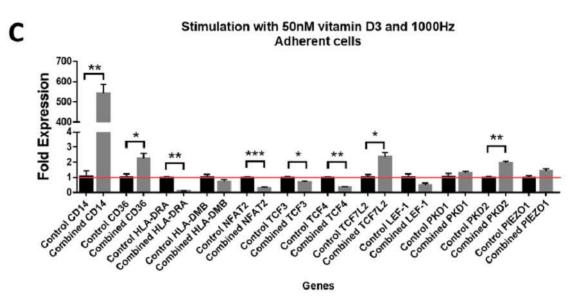



Gene expression in response to different stimulations in suspension THP-1 cells, compared to the unstimulated suspension THP-1 cells.

Data presented as mean of 4 replicates \pm SEM. Statistical analysis between stimulated and control values was assessed by T test with Welch's correction. P values less that 0.05 were considered statistically significant.

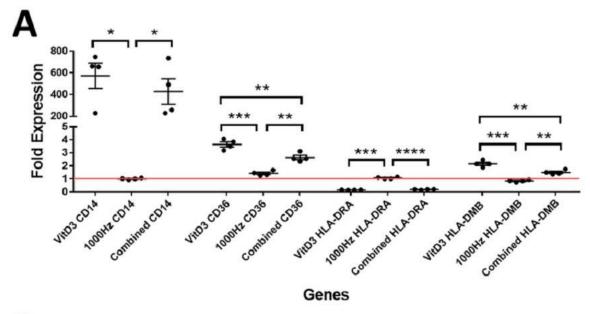


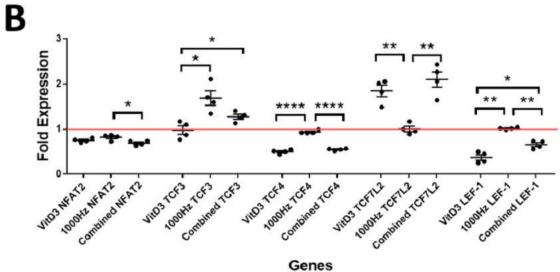


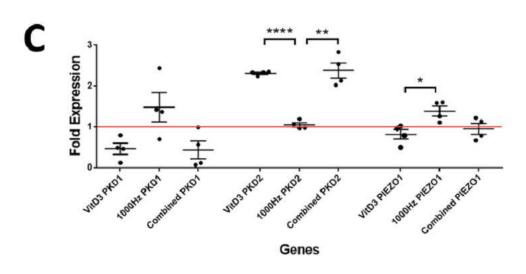


Gene expression in response to different stimulations in adherent THP-1 cells, compared to the unstimulated adherent THP-1 cells.

Data presented as mean of 4 replicates \pm SEM. Statistical analysis between stimulated and control values was assessed by T test with Welch's correction. P values less that 0.05 were considered statistically significant.

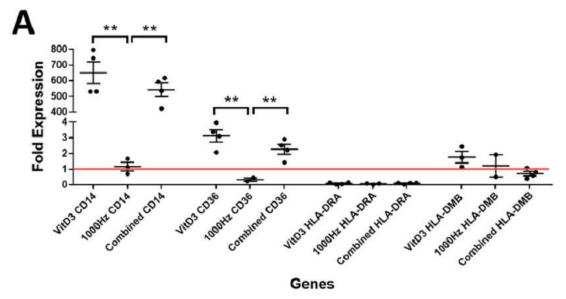


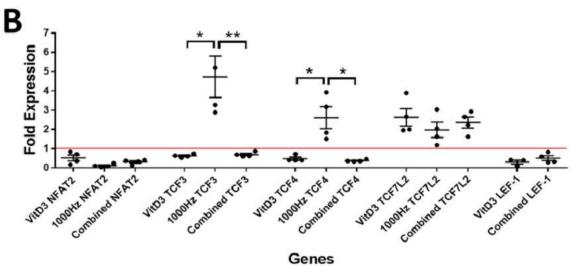


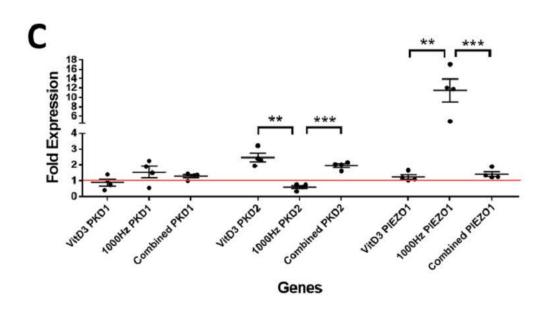


Comparison of fold change values for different genes between the treatments in stimulated THP-1 suspension cells.

Each treatment values were compared to the others using T test with Welch's correction. P values less than 0.05 were considered statistically significant. Genes investigated encode for markers of macrophage differentiation (A), transcription factors (B), and mechanosensors (C).







Comparison of fold change values for different genes between the treatments in stimulated THP-1 suspension cells.

Each treatment values were compared to the others using T test with Welch's correction. P values less than 0.05 were considered statistically significant. Genes investigated encode for markers of macrophage differentiation (A), transcription factors (B), and mechanosensors (C).

Table 1(on next page)

Gene expression in stimulated suspension THP-1 cells compared to the unstimulated suspension cells.

Statistical analysis was performed using T test with Welch's correction. Fold change values higher than 1 indicate upregulation, whereas values between 0 and 1 indicate downregulation of mRNA transcripts in stimulated cells.

		THP-1 cells in suspension	1	
Stimulation	mRNA	Roles Fold change (2^-ΔΔCT) Stimulated cells vs Contro		P value
	CD14	Macrophage marker	573.92	0.0161
	CD36	Macrophage marker	3.66	0.0004
	HLA-DRA	Antigen presentation	0.16	0.0001
50 nM	HLA-DMB	Antigen presentation	2.17	0.0016
1,25(OH)2 D3 (72 hours)	PKD2	Mechanosensory non-selective cation channel	2.32	0.0004
, ,	TCF4	Transcription factor (unknown roles in macrophages)	0.5	0.001
	TCF7L2	Transcription factor (proliferation and differentiation)	1.85	0.0052
	LEF-1	Transcription factor (proliferation and differentiation)	0.37	0.0005
	CD36	Macrophage marker	1.43	0.013
Vibrations	HLA-DMB	Antigen presentation	0.86	0.0404
1000Hz (30 - 60 nm) (72 hours)	PIEZO1	Mechanosensory channel	1.39	0.0441
	TCF3	Transcription factor (unknown roles in macrophages) 1.69		0.0182
	CD14	Macrophage marker	428.9	0.0359
	CD36	Macrophage marker	2.66	0.0009
	HLA-DRA	Antigen presentation	0.19	< 0.0001
	HLA-DMB	Antigen presentation	1.51	0.0071
50 nM 1,25(OH)2 D3 +	PKD2	Mechanosensory non-selective cation channel	2.38	0.0021
Vibrations 1000Hz (30 - 60 nm)	TCF3	Transcription factor (unknown roles in macrophages)	1.27	0.0142
(72 hours)	TCF4	Transcription factor (unknown roles in macrophages)	0.55	0.0026
	NFAT2	Transcription factor (undefined roles in macrophages)	0.69	0.0434
	TCF7L2	Transcription factor (proliferation and differentiation)	2.1	0.0063
	LEF-1	Transcription factor (proliferation and differentiation)	0.66	0.0011

Table 2(on next page)

Gene expression in adherent THP-1 cells compared to the unstimulated adherent cells.

Statistical analysis was performed using T test with Welch's correction. Fold change values higher than 1 indicate upregulation, whereas values between 0 and 1 indicate downregulation of mRNA transcripts in stimulated cells.

		THP-1 cells adhered		
Stimulation	mRNA	Fold change (2^-ΔΔCT) Stimulated cells vs Control		P value
	CD14	Macrophage marker	650.9	0.0026
	CD36	Macrophage marker	3.13	0.0073
	HLA-DRA	Antigen presentation	0.09	0.0011
	PKD2	Mechanosensory non-selective cation channel	2.47	0.0096
50 nM 1,25(OH)2 D3	TCF3	Transcription factor (unknown roles in macrophages)	0.63	0.0134
(72 hours)	TCF4	Transcription factor (unknown roles in macrophages)	0.48	0.0032
	NFAT2	Transcription factor (undefined roles in macrophages)	0.52	0.0458
	TCF7L2	Transcription factor (proliferation and differentiation)	2.63	0.0313
	LEF-1	Transcription factor (proliferation and differentiation) 0.3		0.0491
	HLA-DRA	Antigen presentation 0.07		0.0022
Vibrations 1000Hz (30 - 60 nm) (72 hours)	PIEZO1	Mechanosensory channel	11.44	0.0247
	PKD2	Mechanosensory non-selective cation channel	0.6	0.0236
	NFAT2	Transcription factor (undefined roles in macrophages)	0.12	0.0004
	TCF3	Transcription factor (unknown roles in macrophages) 4.73		0.04
	CD14	Macrophage marker	542.09	0.0011
	CD36	Macrophage marker	2.27	0.0227
	HLA-DRA	Antigen presentation	0.09	0.002
50 nM 1,25(OH)2 D3 +	PKD2	Mechanosensory non-selective cation channel	1.95	0.0013
Vibrations 1000Hz (30 - 60 nm) (72 hours)	TCF3	Transcription factor (unknown roles in macrophages)	0.69	0.0232
	TCF4	Transcription factor (unknown roles in macrophages)	0.37	0.0016
	NFAT2	Transcription factor (undefined roles in macrophages)	0.31	0.0006
	TCF7L2	Transcription factor (proliferation and differentiation)	2.36	0.0116

Table 3(on next page)

Comparison of THP-1 gene expression between different treatments.

The arrows indicate upregulation or downregulation of the genes when comparing the different stimuli. Statistical analysis was performed using T test with Welch's correction

	50nM Vitamin D3		50nM Vitamin D3		50nM Vitamin D3+1000Hz		
	v	vs		vs		vs	
mRNA	100	1000Hz		50nM Vitamin D3+1000Hz		1000Hz	
	Adherent	Suspension	Adherent	Suspension	Adherent	Suspension	
CD14	↑ 559.5 Fold	4 564.9 Fold	No difference	No difference	466.0 Fold	422.2 Fold	
CD14	(p = 0.003)	(p = 0.016)	(p = 0.24)	(p = 0.41)	(p = 0.001)	(p = 0.036)	
CD36	4 9.28 Fold	2.55 Fold	No difference	1.38 Fold	♠ 6.73 Fold	1.85 Fold	
CD36	(p = 0.004)	(p = 0.0003)	(p = 0.14)	(p = 0.008)	(p = 0.006)	(p = 0.002)	
HLA-DRA	No difference	0.15 Fold	No difference	No difference	No difference	0.18 Fold	
HLA-DKA	(p = 0.57)	(p = 0.0001)	(p = 0.87)	(p = 0.14)	(p = 0.39)	(p < 0.0001)	
HLA-DMB	No difference	2.51 Fold	No difference	1.43 Fold	No difference	1.75 Fold	
TILA-DIVID	(p = 0.58)	(p = 0.0008)	(p = 0.09)	(p = 0.006)	(p = 0.61)	(p = 0.002)	
NFAT2	No difference	No difference	No difference	No difference	No difference	0.84 Fold	
NFA12	(p = 0.075)	(p = 0.14)	(p = 0.28)	(p = 0.15)	(p = 0.052)	(p = 0.02)	
TCF3	0.13 Fold	0.58 Fold	No difference	0.77 Fold	0.15 Fold	No difference	
7673	(p = 0.031)	(p = 0.013)	(p = 0.44)	(p = 0.045)	(p = 0.009)	(p = 0.08)	
TCF4	0.18 Fold	0.54 Fold	No difference	No difference	0.14 Fold	0.59 Fold	
7074	(p = 0.032)	(p < 0.0001)	(p = 0.28)	(p = 0.13)	(p = 0.029)	(p < 0.0001)	
TCF7L2	No difference	1.84 Fold	No difference	No difference	No difference	2.09 Fold	
TCF7E2	(p = 0.32)	(p = 0.0034)	(p = 0.63)	(p = 0.29)	(p = 0.46)	(p = 0.0047)	
LEF-1	n/a	0.36 Fold	No difference	0.56 Fold	n/a	0.65 Fold	
LEF-1		(p = 0.0014)	(p = 0.3)	(p = 0.011)		(p = 0.0027)	
PKD1	No difference	No difference	No difference	No difference	No difference	No difference	
7 101	(p = 0.2)	(p = 0.06)	(p = 0.15)	(p = 0.91)	(p = 0.54)	(p = 0.055)	
PKD2	4.09 Fold	2.2 Fold	No difference	No difference	3.24 Fold	2.3 Fold	
FNDZ	(p = 0.0036)	(p < 0.0001)	(p = 0.16)	(p = 0.74)	(p = 0.0001)	(p = 0.0039)	
PIEZO1	0.11 Fold	0.59 Fold	No difference	No difference	0.12 Fold	No difference	
FIEZUI	(p = 0.026)	(p = 0.015)	(p = 0.42)	(p = 0.478)	(p = 0.027)	(p = 0.052)	

2

3