Drop it all: extraction-free detection of nonindigenous marine species through optimized directdigital droplet PCR (#93481)

First submission

Guidance from your Editor

Please submit by 19 Dec 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

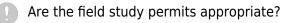
Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files


Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 5 Table file(s)
- 2 Other file(s)

Field study

Have you checked the authors <u>field study permits</u>?

Summary of comments: peerj-reviewing-93481-v0_R1.pdf

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Drop it all: extraction-free detection of non-indigenous marine species through optimized direct-digital droplet PCR

Michelle Scriver $^{\text{Corresp.},1,2}$, Ulla von Ammon 1 , Cody Youngbull 3 , Xavier Pochon 1,2 , Jo-Ann L. Stanton 4 , Neil Gemmell 4 , Anastasija Zaiko 1,5

Corresponding Author: Michelle Scriver Email address: mscr601@aucklanduni.ac.nz

Molecular biosecurity surveillance programs increasingly use environmental DNA (eDNA) for detecting marine non-indigenous species (NIS). However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for a rapid response to new marine NIS incursions. Here, we describe a direct digital droplet PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater sample. This first proof-of-concept aquarium study was conducted with three distinct marine NIS: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 hours. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring for marine biosurveillance, enabling point-of-need detection and rapid management response to biosecurity threats.

PeerJ reviewing PDF | (2023:11:93481:0:1:NEW 28 Nov 2023)

¹ Biosecurity Group, Cawthron Institute, Nelson, New Zealand

 $^{^{\}rm 2}$ Institute of Marine Science, University of Auckland, Auckland, New Zealand

Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States

 $^{^{4}}$ Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand

⁵ Sequench Ltd, Nelson, New Zealand

Page:4

__N.....

Number: 1 Author: Subject: Highlight Date: 2023-12-25 15:39:09

After reading the draft, I came into conclusion that the whole NIS story is not the main focus of the study, but the novelty of the method, regardless the origin of the species. In this regard, I suggest to the authors to leave this connection only to the conclusion section or such.

Drop it all: Extraction-free detection of non-

2 indigenous marine species through optimized direct-

digital droplet PCR

4

- 5 Michelle Scriver^{1,2,*}, Ulla von Ammon¹, Cody Youngbull³, Xavier Pochon^{1,2}, Jo-Ann L.
- 6 Stanton⁴, Neil Gemmell⁴, Anastasija Zaiko^{1,5}

7

- 8 ¹Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- 9 ² Institute of Marine Science, University of Auckland, Auckland, New Zealand
- 10 ³ Nucleic Sensing Systems, LLC, Saint Paul, MN, USA
- 11 ⁴ Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New
- 12 Zealand
- 13 ⁵ Sequench Ltd, Nelson, New Zealand

14

- 15 Corresponding Author:
- 16 Michelle Scriver^{1,2}

17

18 Email address: mscr601@aucklanduni.ac.nz

19

Abstract

20	Molecular biosecurity surveillance programs increasingly use environmental DNA (eDNA) for
21	detecting marine non-indigenous species (NIS). However, the current molecular detection
22	workflow is cumbersome and time-demanding, and thereby can hinder management efforts and
23	restrict the "opportunity window" for a rapid response to new marine NIS incursions. Here, we
24	describe a direct digital droplet PCR (direct-ddPCR) approach to detect species-specific free-
25	floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA
26	without the need for filtration or DNA extraction, with seawater sample. This first proof-of-
27	concept aquarium study was conducted with three distinct marine NIS: the Mediterranean
28	fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown
29	bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The
30	detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water
31	samples using an optimized species-specific ddPCR assay. The results demonstrated the
32	consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were
33	present in high abundance. Once organisms were removed, the free-eDNA signal exponentially
34	declined, noting that free-eDNA persisted between 24-72 hours. Results indicate that organism
35	biomass, specimen characteristics (e.g., stress and viability), and species-specific biological
36	differences may influence free-eDNA detectability. This study represents the first step in
37	assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our
38	results provide information that could aid in the development of new technology, such as a field
39	development of ddPCR systems, which could allow for automated continuous monitoring for
40	marine biosurveillance, enabling point-of-need detection and rapid management response to
41	biosecurity threats.

42

1.0 Introduction

43	Biosecurity surveillance practitioners often face the daunting task of continuously monitoring
44	and managing high-risk regions for biological threats such as emerging diseases or non-
45	indigenous species (NIS), in vast and complex marine environments. Early detection of these
46	risks and rapid responses following detection is essential to maximize the effectiveness of
47	management efforts (McDonald et al., 2020,1 Meyerson & Reaser, 2002; Vander Zanden et al.,
48	2010; Wittenberg & Cock, 2001). Therefore, molecular detection technologies such as
49	environmental DNA (eDNA), which are 2 ton-invasive, cost-effective, sensitive, and rapid tools,
50	are gaining much interest for the integration into biosecurity surveillance programs (Borrell et
51	al., 2017; Duarte et al., 2021; Larson et al., 2020; Pearman et al., 2021; Zaiko et al., 2018).
52	To aid in the uptake of eDNA tools in routine biomonitoring, recent studies have begun to
53	optimize and standardize eDNA workflows and methodology (De Brauwer et al., 2023;
54	Fernandez et al., 2021; Jeunen et al., 2019; Zaiko et al., 2022). However, the current molecular
55	detection workflows are still quite cumbersome, require access to specialized laboratory facilities
56	and expertise in sample processing, and often involve complex sample collection and logistics
57	(Bowers et al., 2021; Jeunen et al., 2022; Larson et al., 2020; Thomas et al., 2020). These
58	challenges can make sample collection arduous and introduce errors and delays, hindering
59	management efforts and limiting the window of opportunity for a rapid response to unwanted
60	NIS incursions (Ponce et al., 2021).
61	Direct PCR amplification could offer a promising solution, by allowing the addition of the
62	sample to the PCR reaction without the need for prior sample preservation, DNA extraction,
63	purification, or quantification; thus, bypassing traditional sample manipulation (Cascella et al.,
64	2015; Cavanaugh & Bathrick, 2018). This technique has been successfully used for bacterial

Page:7

Number: 1 Author: Subject: Highlight Date: 2023-12-25 15:39:28

Many references are missing from the list below. Author should have checked it before.

Number: 2 Author: Subject: Highlight Date: 2023-12-25 15:39:37

Authors have mentioned 'technologies' in plural but gave a single example of eDNA. Something was a bit confusing for me.

I suggest to either mention only the eDNA, or to give one more example

03	detection in chinical trials, environmental and mixed samples, as well as touch DNA in forensic
66	science, DNA barcoding of macroinvertebrate tissues, metabarcoding marine bacterial
67	communities and species identification in wildlife forensics (Benson et al., 2004; Cascella et al., 1
<mark>68</mark>	2015; Cavanaugh & Bathrick, 2018; Kitpipit et al., 2013; Mora et al., 2013; Nakao & Popovic,
<mark>69</mark>	1997; Pacocha et al., 2019; Stojan et al., 2023). The complex nature of eDNA, which consists of
70	a mixture of genetic material from living organisms, expelled cells and particles, extracellular
71	DNA bound to substrates, and free-floating eDNA, makes it an ideal target for direct PCR
72	(Barnes & Turner, 2015; Pawlowski et al., 2020; Zaiko et al., 2022). Direct PCR is particularly
73	suitable for detecting specific states of eDNA, such as free-floating extracellular eDNA (free-
74	eDNA), which is not bound to other particles or within cells and can originate from cellular
75	debris or damaged cells that can be easily lysed with high temperatures. Furthermore, the
76	combination of direct PCR with droplet digital PCR (ddPCR) technology allows for the detection
77	of trace amounts of free-DNA while minimizing errors, contamination, time, and cost (Cao et al.,
78	2016; Capo et al., 2021; Templeton et al., 2015). By combining the absolute quantification
79	capability of ddPCR with the advantages of direct PCR, direct-ddPCR has the potential to enable
80	detection directly from water samples, simplifying the workflow and facilitating response and
81	management programs. Despite the tremendous potential and advantages of direct-ddPCR
82	technology, its application for the direct detection of free-eDNA in seawater remains unexplored,
83	offering an opportunity for further research and development.
84	This study investigates the feasibility of detecting species-targeted free-eDNA from saltwater by
85	analyzing seawater samples using direct-ddPCR, bypassing the filtration or DNA extraction
86	steps. To achieve this goal, the initial focus was on optimizing direct-ddPCR assays to reduce
87	inhibition caused by salt. Although ddPCR has shown better performance than qPCR for

Page:8

Number: 1 Author: Subject: Highlight Date: 2023-12-25 15:39:48

I suggest to insert the relevant ref next to each example. It will improve the readability.

88 amplifying low eDNA levels in the presence of inhibitors, salt can still affect the reaction 89 (Davalieva & Efremov, 2010; Mauvisseau et al., 2019; Sedlak et al., 2014). Once an optimized 90 protocol was established using free-eDNA from preserved samples, a proof-of-concept aquarium 91 experiment was designed with the presence of three known marine organisms, Sabella 92 spallanzanii, Bugula neritina and Styela clava. The objectives of the present study were: (i) to 93 explore the immediate detection of marine NIS from free-eDNA in seawater samples using 94 direct-ddPCR technology, (ii) to determine the influence of species characteristics and biomass on the detection of free-eDNA, and (iii) to assess the longevity of free-eDNA signal in the 95 96 system once the organisms are removed. 2.0 Materials & Methods 97 98 2.1 In-vitro optimization trials for free-floating environmental DNA detection in seawater 99 Individual NalgeneTM square polycarbonate bottles (Thermo Fisher Scientific, USA) were filled 100 with 250 mL of one of the following: tap water, purified water (Milli-Q®; Millipore SigmaTM, 101 USA), locally collected seawater or artificial seawater with varying salinities (Red Sea Salt-102 Copepod salt; Red Sea Germany). New Zealand marine NIS organisms used for testing included 103 Sabella spallanzanii (Gmelin, 1791) - a large Mediterranean fanworm, Styela clava (Herdman, 104 1881) - a leathery club tunicate and Bugula neritina (Linnaeus, 1758) - a bush-like, calcified 105 bryozoan, all of which were preserved in 99% ethanol and placed individually in separate Nalgene bottles. To simulate eDNA release, the organisms were vigorously shaken within the 106 107 bottles for several minutes. Subsequently, water aliquots were collected from each bottle and 108 directly added to species-specific ddPCR reactions. 109 The direct-ddPCR assays were optimized to minimize salt inhibition, and various additives and 110 assay manipulations were tested. This included evaluating PCR additives such as glycerol,

111	difficulty suffoxide (DMSO), Tween-20, and bovine serum aroundin (BSA), as well as the
112	assessment of sample volume, pH adjustment buffers and bases (1M potassium hydroxide
113	(KOH), 1X Tris-acetate-EDTA (TAE), 1M tris aminomethane (Tris) pH 8.0, and 1M 4-(2-
114	hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.2), PCR annealing temperature
115	gradient (ranging from 54 to 62°C), and the adjustment of primer and probe concentrations.
116	Additionally, different ddPCR master mixes, including ddPCR TM Multiplex Supermix (No
117	dUTP) and ddPCR TM Supermix for Residual DNA Quantification from BioRad, were compared.
118	Detailed information regarding the testing and optimization procedures can be found in the
119	supplementary material (Supplementary File 2).
120	2.2 Experimental setup and organism collection
121	An aquarium-based experiment was conducted between January and February 2023 at a PC23
122	biocontainment facility. All work was done in a controlled laboratory setting, and in accordance
123	with biosecurity regulations, i.e., permission to handle organisms under sections 52 and 53 of the
124	Biosecurity Act 1993 (Notice No. MPI 111).
125	Seven transparent polycarbonate 26 L tanks with lids and individual aeration pumps were
126	enclosed within a temperature-controlled room (21.3 °C). Experimental tanks were maintained
127	without water exchange to eliminate the effects of inflow on eDNA concentrations and water
128	mixing between tanks. Each tank was filled with UV-treated seawater with a pH between 8-8.1,
129	salinity = 35ppt, and water temperature = 20°C. Prior to the start of the experiment, the tanks and
130	the system underwent a cleaning process according to facility procedures: scrubbing the tanks
131	and recirculating the system with a 200-ppm bleach solution for two days. Subsequently, the
132	system was rinsed with sodium thiosulfate to neutralize any remaining chlorine and thoroughly
133	rinsed with distilled water.

Page:10

- Number: 1 Author: nirstern Subject: Highlight Date: 2023-12-23 18:43:48
- Number: 2 Author: nirstern Subject: Highlight Date: 2023-12-23 18:44:23
- Number: 3 Author: Subject: Highlight Date: 2023-12-25 15:40:03

134	The aquarium experiment was set up with three morphologically distinct marine invasive
135	species: S. spallanzanii, S. clava and B. neritina. Sabella spallanzanii individuals were collected
136	from a pontoon in Marsden Cove Marina (Marsden Bay, New Zealand: 35.84° S, 174.47° E; 16
137	January 2023) with local seawater and were shipped in containers on ice to the laboratory. Both
138	S. clava and B. neritina used in the aquarium experiment were sourced from the side of pontoons
139	from the Nelson Marina (Nelson, New Zealand: 41.26° S, 173.28° E; 17 January 2023) and
140	immediately transported to the laboratory.
141	The collected specimens were left to acclimate at the laboratory in tanks with seawater for five
142	days without feeding. At the beginning of the experiment (designated as time point zero), the live
143	specimens were distributed among three experimental tanks, with an additional fourth tank left
144	empty as a negative control. The allocation of specimens to each tank was determined based on
145	their size and the number of specimens (this factor is referred to as "biomass or biomass
146	treatment" hereafter, Table 1). The total species weight per tank for each species was determined
147	by weighing the organisms after their removal. Note that the assigned biomass treatments (high,
148	medium, and low) were based on the relative weight within each species, rather than between
149	species. To ensure that S. spallanzanii and B. neritina stood upright, organisms were attached to
150	a sterilized stainless-steel bolt using plastic cables (Fig. 1). Styela clava had a string attached to
151	its stem to hang vertically down, to mime their usual orientation in the environment (Fig. 1).
152	TABLE ONE
153	FIGURE ONE
154	2.3 Sample Collection
155	Sterile dual filter T.I.P.S® PCR 50-1000 µL Tip (76 mm) (Eppendorf, Germany) on a
156	compatible micropipette were used to collect water samples (1 mL) from each of the four tanks,

157 5-7 cm below the surface. Samples were collected immediately after adding the organisms and 158 then at 4, 8, 24, 48, 72, 96, and 192 (8 days) hours. At each sampling occasion, six replicates 159 were taken randomly, targeting different locations in the tank (i.e., back left, back right, front 160 left, front right, and two samples from the middle). Samples were collected in microcentrifuge 161 tubes and kept on ice until further processing (c. 1 h). After removing the organisms, samples were collected immediately and then at 4, 8, 24, 48, and 162 163 72 hours as described above (Fig. 2). Removed organisms were weighed and photographed (Fig. 164 S1). 165 **FIGURE TWO** 166 2.4 Direct Droplet digital polymerase chain reaction Direct-Droplet digital PCR (direct-ddPCR) was conducted in an automated droplet generator 167 168 (QX200 Droplet Digital PCR SystemTM, BioRad, USA). Copy numbers (per μL) of the 169 Cytochrome c oxidase subunit 1 (COI) gene were measured in all samples using primers and 170 probes specific to S. spallanzanii (Wood et al., 2019) and S. clava (Gillum, 2014) and primers 171 specific to B. neritina (Kim et al., 2018) (Table 2). To compare the results between the two 172 ddPCR chemistries, both the hydrolysis probe (TaqMan) and DNA binding dye (EvaGreen®) 173 assays were utilized in this study. The S. spallanzanii and S. clava direct-ddPCR assays were 174 performed in duplex, as the hydrolysis Sab3-QPCR-Probe was dual-labelled with a 5' 6carboxyfluorescein (6-FAM) fluorescent tag and a 3' Black Hole Quencher. In contrast, the 175 176 hydrolysis SC1-QPCR probe was designed with a 5' hexachlorofluorescein (HEX) fluorescent 177 tag and a 3' non-fluorescent quencher (NFQ). The duplex direct-ddPCR reaction included 10 μL 178 of 2X ddPCR Supermix for Probes (No dUTP) (BioRad, USA), 1 µL of each primer and probe at 179 10 pmol, 1 μL of the collected water sample and 4 μL of sterile water for a total volume of 21

180	μL . For the <i>B. neritina</i> direct-ddPCR assay, each direct-ddPCR reaction included 10 μL of 2X
181	QX200 TM ddPCR TM EvaGreen Supermix (BioRad, USA), 0.5 μL of each primer at 10 pmol, 1
182	μL of the collected water sample and 9 μL of sterile water for a total volume of 21 μL . The
183	BioRad QX200 droplet generator partitioned each reaction mixture into nanodroplets by
184	combining 20 μL of the reaction mixture with 70 μL of BioRad droplet oil, either for probes
185	(Automated Droplet Generation Oil for Probes, BioRad, USA) or for EvaGreen (Automated
186	Droplet Generation Oil for EvaGreen, BioRad, USA).
187	The duplex, S. spallanzanii and S. clava direct-ddPCR assay used the following cycle conditions:
188	hold at 95 °C for 10 min, 40 cycles of 95 °C for 30 s, 57 °C 1 min, and a final enzyme
189	deactivation step at 98 °C for 10 min. The <i>B. neritina</i> direct-ddPCR assay used the following
190	cycle conditions: hold at 95 °C for 10 min, 40 cycles of 95 °C for 30 s, 57 °C 1 min, and a final
191	signal stabilization and enzyme deactivation steps at 4 °C for 5 min and 90°C for 5 min. The
192	plates were then analyzed on the QX200 instrument, including at least one negative control
193	(RNA/DNA-free water Life Technologies) and one positive control (genomic DNA extracted
194	from S. clava and S. spallanzanii or B. neritina). Based on our experience and observation of
195	ddPCR noise (e.g., proportions of fluorescing droplets in water blanks), the detection for all
196	assays was set above the maximum value of the negative controls in the experiment, i.e., 0.08
197	copies/ μ L for the <i>B. neritina</i> and <i>S. clava</i> direct-ddPCR assays and 0.130 copies/ μ L for the <i>S.</i>
198	spallanzanii direct-ddPCR assay.
199	TABLE TWO
200	2.5 Limit of detection and limit of quantification assay
201	To determine the limit of detection (LOD) and quantification (LOQ) for the direct-ddPCR of two
202	assays, a serial dilution of the positive control (genomic DNA extracted from either S. clava and

203	$\it S.~spallanzanii~or~\it B.~neritina~(20~ng/\mu L))$ was performed and analyzed. The two assays' ten-fold
204	series of the 2x dilution (e.g., 1/100 to 1/102400) began with the genomic DNA diluted to 200 pg
205	(1/100 dilution) and ended with a final concentration of 0.195 pg. Six replicates of each dilution
206	and negative control were included in both series, and all dilutions were performed with fresh
207	seawater from the aquarium experiment.
208	2.6 Data Analysis
209	All statistical analyses and visualizations were conducted in R version 4.2.1 software (R Core
210	Team, 2023). A Kruskal-Wallis test and Wilcoxon rank sum test were performed to determine
211	whether there was a significant difference in free-eDNA signal for each species between tanks
212	and between species. To analyze the detection of free-eDNA following the removal of
213	organisms, an exponential decay model was fitted using the 'easynls' package in the R software
214	(Kaps, 2009; R Core Team, 2023; Wood et al., 2020). Calculations for limit of detection (LOD),
215	for each direct-ddPCR assay, were based on 95% confidence limit where the lowest level of
216	detection was greater than the maximum value of negative controls (Baker et al., 2018). To infer
217	the limit of quantification (LOQ) of the direct-ddPCR assays, the coefficient of variation (CV)
218	was calculated for each standard, and the LOQ was defined as lowest standard concentration
219	with a CV value below 35% (Klymus et al., 2020). Evaluation of the linearity of quantitative
220	measurement (quantitative linearity) for the direct-ddPCR assays was assessed by the log10-
221	transformed copy concentration measured by direct-ddPCR plotted against the log10-
222	transformed inputted ng of DNA and fitted with a linear regression (Zhao et al., 2016). To
223	determine relationships between biomass (weight in g) and free-eDNA concentrations
224	determined by direct-ddPCR, "lme4" package in R was used to fit a generalized linear mixed
225	model. The mixed model was used to consider factors such as species, tank, and weight as

226

predictors of free-eDNA concentration and assess their effects on the variability in free-eDNA concentrations. 227 3.0 Results 228 229 3.1 Pilot testing and assay optimization for free-floating environmental DNA detection in 230 seawater 231 Despite trying several methods, none of the additives, buffers, or pH adjustments used could 232 completely eliminate the inhibition of saltwater (Supplementary File 2). To mitigate the 233 inhibition in observed gene copy numbers due to salt, sample dilution was found to be necessary 234 to detect free-eDNA (Fig. S4). The best volume proportions for the direct-ddPCR assays were 235 determined to be 20μL of ddPCR master mix (Supermix, primers/probes and water) and 1 μL of 236 the seawater sample (Fig. S4). Additionally, the primer concentration for the *B. neritina* assay 237 was modified to 250 nM instead of 450 nM. An annealing temperature of 57°C was established 238 as optimal for all assays following the temperature gradient analysis. 239 3.2 Detection of free-floating environmental DNA from aquaria with organisms present There was no amplification in samples collected from the negative control tank or the no-240 241 template direct-ddPCR controls throughout the entire experiment. 242 The amplitude of detection from free-eDNA varied and depended on the biomass treatment 243 and/or targeted species. For S. clava, low to no detectable free-eDNA concentrations were 244 observed at most time points when organisms were present, regardless of the tank (Fig. 3A). 245 Conversely, B. neritina consistently exhibited free-eDNA detection throughout all time points 246 but only in the high biomass treatment (Fig. 3B). On the other hand, S. spallanzanii consistently 247 showed free-eDNA detection at all time points and in all tanks (Fig. 3C). The overall highest 248 free-eDNA copy numbers (13.3 copies/µL) were observed in the S. spallanzanii tank with the

PeerJ

- 249 highest fanworm biomass (three organisms and a total weight of 32.7 g), at the 192 hours
- 250 sampling time point (Fig. 3; Table S1).
- 251 The free-eDNA concentrations among the three species were significantly different (Kruskal-
- Wallis chi-squared = 58.152, df = 2, p-value < 0.0001 (p= 2.358e-13)). Further pairwise
- comparisons revealed significant differences between S. spallanzanii and S. clava (p = 0.0037),
- as well as between S. spallanzanii and B. neritina (p-value < 0.0001 (p= 9.3e-13)), but there was
- 255 no significant difference between S. clava and B. neritina (p = 0.8207). It is important to note
- 256 that S. clava free-eDNA had a much lower positive detection rate (6.25%) compared to B.
- 257 *neritina* (24.3%) and *S. spallanzanii* (74.3%) (Fig. 3; Table S1).
- 258 There were significant differences in S. spallanzanii free-eDNA copies/μL between high and low
- (p=0.0015) as well as low and medium biomass treatment (p<0.0001 (p=5.4e-09)), but not
- between high and medium biomass treatment (p = 0.258) (Kruskal-Wallis chi-squared = 29.715,
- 261 df = 2, p-value < 0.0001 (p= 3.528e-07)) (Fig. 3C; Table S2). Similarly, for *B. neritina*,
- significant differences were between high and low biomass treatment (p = 0.043) and medium
- and high (p=0.042), but not between low and medium biomass treatment (p = 1.0) (Kruskal-
- Wallis chi-squared = 8.922, df = 2, p-value = 0.011) (Fig. 3B; Table S2). In contrast, no
- significant differences were observed among the three biomass treatments for S. clava (Kruskal-
- Wallis chi-squared = 2.5247, df = 2, p-value = 0.283) (Fig. 3A; Table S2).
- 267 FIGURE THREE
- 268 3.3 Detection of free-floating environmental DNA after removal of organisms
- After organisms were removed at the 192-hour time point, an exponential decrease in free-eDNA
- 270 concentrations was observed. For S. clava in the low biomass treatment, the free-eDNA signal
- was undetectable around 24 hours after organism removal (Fig. 4A). However, for *B. neritina*

PeerJ

272	and S. spallanzanii, some free-eDNA signal was still detectable for up to 72 hours, in the
273	medium and low biomass treatment, and the high and medium biomass treatment, respectively.
274	(Fig. 3B; Fig. 3C; Fig. 4).
275	Notably, for S. clava, no detection of free-eDNA was observed in the high or medium biomass
276	treatment after the removal of organisms (below 0.08 copies/ μL after time point zero) (Fig. 3A).
277	In the case of B. neritina, only one out of the six replicates in the high and low biomass treatmen
278	showed detectable levels of free-eDNA at 72 hours (0.162 and 0.120 copies/ μL , respectively). In
279	contrast, all six replicates in the high biomass treatment for S. spallanzanii exhibited detectable
280	levels of free-eDNA at 72 hours (average = 0.257 copies/ μ L), and two replicates in the medium
281	biomass treatment also showed detectable levels (average = $0.160 \text{ copies}/\mu\text{L}$).
282	For S. spallanzanii, the free-eDNA concentrations remained relatively stable within the first 8
283	hours in the high biomass treatment, averaging 17.5 copies/ μ L (STDEV=2.82). However, a
284	decline was observed at the 24-hour mark (average= $6.72 \text{ copies/}\mu\text{L}$). The exponential signal
285	decrease continued after 24 hours, and at the 72-hour mark, the average free-eDNA
286	concentration decreased to an average of 0.257 copies/ μ L. (Fig. 3C; Fig. 4B).
287	The goodness of fit for the exponential models was evaluated using the R-squared values.
288	Sabella spallanzanii free-eDNA showed the best fit with an R-squared value of 0.974 (Fig. 4B),
289	while S. clava (Fig. 4A) and B. neritina (Fig. 4C) had R-squared values of 0.855 and 0.823,
290	respectively (Table S3).
291	FIGURE FOUR
292	3.4 Limits of Detection and Quantification
293	In general, the dilution series showed an exponential decrease in DNA concentrations for all
294	three species and direct-ddPCR reaction exhibited good linearity (all R ² >0.737, p-value<

295	0.0001) (Fig. S5). However, for S. clava, the DNA concentrations exhibited stability across
296	dilutions of 1/1600 and 1/6400, showing a consistent mean concentration of 0.232 copies/ μL
297	(STDEV=0.020). The lower 95% confidence limit ranged from 0.075 to 0.128, which falls just
298	outside the mean concentration of the blank (0.071 copies/ μ L). Based on these findings, we
299	determined the LOD to be >0.234 copies/ μ L (dilution 1/1600) (Table 3; Fig. S2). The LOD for
300	S. spallanzanii was considered to be >0.380 copies/ μ L (dilution 1/6400), and for B. neritina
301	LOD was calculated as >0.536 copies/ μ L (dilution 1/12800) (Table 3; Fig. S2).
302	We considered the LOQ for S. spallanzanii, to be 0.698 copies/ μ L (dilution 1/3200) (Table 3;
303	Fig. S3). Despite the CV of 36.5% observed for the <i>B. neritina</i> standard curve at dilution 1/1600,
304	we determined the LOQ for B. neritina to be 0.739 copies/ μL at dilution 1/3200. Dilutions below
305	1/3200 consistently exhibited CV values exceeding 35% (Table 3; Fig. S3). The S. clava assay
306	had the most variability and we considered the LOQ for S. clava, to be 24 copies/ μL (dilution
306307	had the most variability and we considered the LOQ for S. clava, to be 24 copies/ μ L (dilution 1/2.5) (Table 3; Fig. S3).
307	1/2.5) (Table 3; Fig. S3).
307 308	1/2.5) (Table 3; Fig. S3). TABLE THREE
307308309	1/2.5) (Table 3; Fig. S3). TABLE THREE 4.0 Discussion
307308309310	1/2.5) (Table 3; Fig. S3). TABLE THREE 4.0 Discussion To the best of our knowledge, this study represents the first published evaluation and validation
307308309310311	1/2.5) (Table 3; Fig. S3). TABLE THREE 4.0 Discussion To the best of our knowledge, this study represents the first published evaluation and validation of direct-ddPCR's capability to detect free-eDNA from targeted marine invasive species through
307 308 309 310 311 312	1/2.5) (Table 3; Fig. S3). TABLE THREE 4.0 Discussion To the best of our knowledge, this study represents the first published evaluation and validation of direct-ddPCR's capability to detect free-eDNA from targeted marine invasive species through seawater sampling, marking the initial phase in the development of eDNA detection applications
307 308 309 310 311 312 313	1/2.5) (Table 3; Fig. S3). TABLE THREE 4.0 Discussion To the best of our knowledge, this study represents the first published evaluation and validation of direct-ddPCR's capability to detect free-eDNA from targeted marine invasive species through seawater sampling, marking the initial phase in the development of eDNA detection applications that could bypass the need for traditional sample processing steps.
307 308 309 310 311 312 313 314	1/2.5) (Table 3; Fig. S3). TABLE THREE 4.0 Discussion To the best of our knowledge, this study represents the first published evaluation and validation of direct-ddPCR's capability to detect free-eDNA from targeted marine invasive species through seawater sampling, marking the initial phase in the development of eDNA detection applications that could bypass the need for traditional sample processing steps. 4.1 Feasibility of free-floating environmental DNA in marine environments

318	Efremov, 2010; Kuffel et al., 2021; Lorenz, 2012; Mubarak et al., 2020). Therefore, detecting
319	free-eDNA directly from seawater samples is not a trivial task and requires in vitro optimization
320	of the direct-ddPCR reaction, as was done in the present study.
321	Mitigating the inhibitory effects of salt was a critical step in achieving accurate detection and
322	reducing the sample volume to 1 μL proved to be an effective approach (Fig. S4). Previous
323	research has demonstrated that dilution can enhance reaction efficiency by reducing the
324	concentration of inhibitors and has been used successfully as a method to detect bacteria in
325	drinking water (Benson et al., 2004; Kokkoris et al., 2021). However, it is important to
326	acknowledge that using a 1 μL volume may not be optimal in highly dynamic marine
327	environments, especially when targeting rare species or new incursions that may require larger
328	water volumes to increase likelihood of detection (Bowers et al., 2021; Diaz-Ferguson & Moyer,
329	2014). To adapt this technique for field studies and reduce inhibition of salt further optimization
330	of direct-ddPCR reactions may be necessary, such as using low salt ddPCR Supermix, exploring
331	different DNA polymerase blends, diluting the sample prior to testing in the reaction, testing 1
332	alternative polymerases that are less affected by salt interference, and evaluating alternative
333	polymer-buffer systems (Hedman et al., 2010; Sidstedt et al., 2017) (Supplementary File 2). One
334	example is the use of the multiplex master mix and buffering the water solution prior to sample
335	collection, allowed for additional sample input. We found that using the ddPCR™ Multiplex
336	Supermix and diluting the sample with buffers yielded a positive detection of free-eDNA during
337	our in-vitro optimization trials. This is likely attributed to the replacement of the reduced volume
338	of master mix with nuclease-free water and overall dilution, enabling an increase in the input
339	sample volume up to 3 μL (Supplementary File 2). Although even with optimization, the

Page:19

Number: 1 Author: Subject: Highlight Date: 2023-12-25 15:40:39

341	ability to allow for a massive increase in the number of continuous samples, enabling higher
342	spatial-temporal coverage.
343	Additionally, we acknowledge that the distribution of free-eDNA within an ecosystem can be
344	unpredictable and patchy (Bowers et al., 2021; Eichmiller et al., 2014; Harper et al., 2018;
345	Itakura et al., 2020). In this study, samples were only collected from the top ~5 cm of the tank,
346	corresponding to the length of a P1000 tip. Consequently, certain free-eDNA molecules may
347	have remained undetected despite aeration-induced mixing. Hence, researchers should tailor the
348	testing direct-ddPCR assay in the field to their specific environment and target species,
349	considering factors such as detection probabilities and accordingly adjust sample dilution,
350	volume, sampling depth, and sampling design.
351	4.2 Effect of biomass and species on the detection of free-floating environmental DNA with
352	digital droplet polymerase chain reaction
353	To explore the influence of species on the detectability of free-eDNA, this study focused on three
354	morphologically and biologically distinct marine invasive invertebrates: S. spallanzanii, S. clava
355	and B. neritina. The results revealed significantly higher positive detection levels and free-eDNA
356	concentrations for S. spallanzanii compared to both B. neritina and S. clava (Table S1; Table
357	S2). These findings are consistent with the observations of Wood et al. (2020), who also reported
358	higher eDNA concentrations of S. spallanzanii compared with S. clava in laboratory-controlled
359	conditions. The variations in detectability were attributed to anatomical differences between
360	organisms, with S. spallanzanii potentially shedding more eDNA due to its fragile feeding
361	tentacles, while S. clava's tougher tunic may result in lower eDNA release (Wood et al., 2020).
362	Bugula neritina, with its interconnected zooids enclosed within a calcified exoskeleton (Keough

363	& Chernoff, 1987; Trindade-Silva et al., 2010), may exhibit lower release of free-eDNA
364	compared to S. spallanzanii observed in this study.
365	The study also aimed to assess the potential impact of species biomass on free-eDNA detection.
366	Previous studies have reported positive relationships between biomass abundance and eDNA
367	concentrations (Bradley et al., 2022; Doi et al., 2015; Everts et al., 2021; Lacoursière-Roussel et
368	al., 2016; Rourke et al., 2022; Tillotson et al., 2018). Although some recent studies have implied
369	that eDNA may not be useful to infer abundance of some species (Rourke et al., 2023). In our
370	analysis, we found significantly positive linear relationships between weight and concentration
371	for <i>B. neritina</i> and a moderate positive linear relationship for <i>S. spallanzanii</i> (Fig. S6.). However,
372	S. clava showed a non-significant weak positive correlation, indicating a less pronounced
373	relationship between weight and concentration (Fig. S6). Further analysis using a generalized
374	linear mixed model (Table S4) revealed that weight alone did not have a significant effect on
375	concentration, suggesting that it may not be a reliable predictor of free-eDNA concentrations and
376	multiple factors, such as tank (intra-species variation) and species, that contribute to the
377	variability in free-DNA direct-ddPCR data, should be considered when interpreting the results.
378	Variations in eDNA shedding have been observed among individuals, even when exposed to the
379	same environment and exhibiting similar behaviour, with some studies reporting up to a 100-fold
380	variation from the same fish under controlled conditions (Rourke et al., 2022). Factors such as
381	stress and viability can influence interspecific variation in eDNA shedding, as seen in our study
382	where animals, specifically S. spallanzanii, may have experienced stress during transportation
383	and adaptation to the new aquarium conditions. Stress can create an imbalance between eDNA
384	accumulation and decay (Rourke et al., 2023). Furthermore, the death of some organisms during

the study could also have implications for eDNA shedding, with some models suggesting that
shedding rates may increase after death (Tillotson et al., 2018).
Considerations should be given to the sensitivity and precision of species-specific ddPCR assays.
as well as methodological aspects such as filtration and DNA extraction, as they significantly
impact detection and recovery rates of eDNA (Capo et al., 2021; Hinlo et al., 2017; Schweiss et
al., 2019). Assessing the performance of direct-ddPCR assays involves evaluating the LOD and
LOQ, which reflect the assay's sensitivity and ability to accurately quantify low levels of target
sequences (Klymus et al., 2020). In the present study, the LOD was similar across all three
assays, but the LOQ for S. clava differed, suggesting the need for further optimization for routine
POC applications (Table 3). Evaluating sensitivity also requires considering the ddPCR
chemistry employed, such as the hydrolysis probe (TaqMan) and DNA binding dye
(EvaGreen®). Both the EvaGreen assay (for <i>B. neritina</i>) and the duplex probe assay (for <i>S.</i>
spallanzani and S. clava) demonstrated comparable sensitivity in detecting free-eDNA, as
indicated by the LOD values (Table 3). These findings align with previous research that reported
similar sensitivity for these ddPCR chemistries (Falzone et al., 2020; McDermott et al., 2013).
Our study focused on assessing the feasibility of detecting free-eDNA in seawater rather than
directly comparing it with traditional methods. However, when comparing the ddPCR results
from our study with previous research by Wood et al. (2018), it becomes evident that traditional
filtration and extraction methods may yield higher starting concentrations of S. spallanzanii and
S. clava eDNA compared to the direct detection of free-eDNA. This disparity in methodology
could potentially impact the detection rates and should be taken into account when designing a
survey (e.g., by adjusting the replication levels).

40 /	4.3 Persistence of free-floating environmental DNA in seawater
408	Understanding the fate and persistence of free-eDNA is crucial for optimizing sampling
409	strategies, improving detection accuracy, and interpreting findings (Farrell et al., 2021; Harrison
410	et al., 2019; Yates et al., 2021; Zaiko et al., 2018).
411	We observed that the free-eDNA signal for high biomass treatments of <i>S. spallanzanii</i> and <i>B</i> .
412	neritina was detected up to 72 hours, while that of S. clava – to only 24 hours (Fig. 4). These
413	findings contrast with a previous study by Wood et al. (2020), who reported that the eDNA
414	signal of <i>S. spallanzanii</i> declined below the detection limits of ddPCR within 35 hours, while <i>S.</i>
415	clava could still be detected up to 87 hours. Although this suggests that free-eDNA may degrade
416	at a slower rate than initially anticipated, these discrepancies also highlight the complexities and
417	variability in eDNA degradation processes, which may be influenced by abiotic conditions,
418	system setup, and inherent variability within the organisms (e.g., stress, viability). It is also
419	important to consider that free-eDNA may contain cellular contents released from damaged cells
420	or lysed cell particles during high-temperature PCR cycles (Shehadul Islam et al., 2017).
421	Therefore, further research is necessary to accurately classify and characterize free-eDNA using
422	a combination of laboratory and in-field methods capable of capturing different size fractions of
423	free-eDNA (Jo et al., 2019; Moushomi et al., 2019; Turner et al., 2014; Wilcox et al., 2015).
424	5.0 Conclusions
425	To the best of our knowledge, this study marks the first published investigation of direct-ddPCR
426	assay for the detection of free-eDNA from a seawater sample, circumventing the requirement for
427	sample processing steps. The results obtained demonstrate the feasibility of employing this
428	technology for the detection of free-eDNA if salt inhibition is effectively addressed through
429	assay optimization. The success of free-eDNA detection was influenced by the targeted species

and their biomass. We were able to detect free-eDNA for up to 72 hours following org	anisms'
removal. These findings emphasize the importance of understanding the ecological	
characteristics of the targeted free eDNA, such as dynamics of production/shedding, an	nd
longevity. It is crucial to develop assays that are customized for species and environment	ents of
interest. In summary, these encouraging results provide a foundation for the advancem	ent and
application of direct-ddPCR, acknowledging that further work is required if this technology	ology is to
be utilized in the field.	
Acknowledgements	
This research was supported by the New Zealand Ministry of Business, Innovation and	l
Employment funding (CAWX1904—A toolbox to underpin and enable tomorrow's ma	arine
biosecurity system). We would like to thank Erin Bomati for her invaluable assistance	in
collecting and transporting Sabella spallanzanii samples. Additionally, we would like	
confecting and transporting <i>Subena spananzamii</i> sampies. Additionally, we would like	to express
our gratitude to the staff at the Cawthron Institute, including Michael Scott, Daniel Cro	-
	oss,

References

- Baker, C. S., Steel, D., Nieukirk, S., & Klinck, H. (2018). Environmental DNA (eDNA) From
- the Wake of the Whales: Droplet Digital PCR for Detection and Species Identification.
- Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00133
- Barnes, M. A., & Turner, C. R. (2015). The ecology of environmental DNA and implications for
- 451 conservation genetics. *Conservation Genetics*, 17(1), 1-17.
- 452 https://doi.org/10.1007/s10592-015-0775-4
- Benson, J. A., Fode-Vaughan, K. A., & Collins, M. L. (2004). Detection of *Helicobacter pylori*
- in water by direct PCR. Letters in Applied Microbiology, 39(3), 221-225.
- 455 https://doi.org/10.1111/j.1472-765X.2004.01555.x
- Bowers, H., Pochon, X., von Ammon, U., Gemmell, N., Stanton, J.-A., Jeunen, G.-J., Sherman,
- 457 C., & Zaiko, A. (2021). Towards the Optimization of eDNA/eRNA Sampling
- 458 Technologies for Marine Biosecurity Surveillance. *Water*, 13(8), 1113.
- 459 https://doi.org/10.3390/w13081113
- 460 Bradley, D. L., Morey, K. C., Bourque, D. A., Fost, B., Loeza-Quintana, T., & Hanner, R. H.
- 461 (2022). Environmental DNA detection and abundance estimates comparable to
- 462 conventional methods for three freshwater larval species at a power plant discharge.
- 463 Environmental DNA, 4(3), 700-714. https://doi.org/10.1002/edn3.286
- 464 Cao, Y., Griffith, J. F., & Weisberg, S. B. (2016). The Next-Generation PCR-Based
- Quantification Method for Ambient Waters: Digital PCR. *Methods in Molecular Biology*,
- 466 1452, 113-130. https://doi.org/10.1007/978-1-4939-3774-5 7
- 467 Capo, E., Spong, G., Koizumi, S., Puts, I., Olajos, F., Königsson, H., Karlsson, J., & Byström, P.
- 468 (2021). Droplet digital PCR applied to environmental DNA, a promising method to
- estimate fish population abundance from humic-rich aquatic ecosystems. *Environmental*
- 470 DNA, 3(2), 343-352. https://doi.org/10.1002/edn3.115
- 471 Cascella, R., Strafella, C., Ragazzo, M., Zampatti, S., Borgiani, P., Gambardella, S., Pirazzoli,
- 472 A., Novelli, G., & Giardina, E. (2015). Direct PCR: a new pharmacogenetic approach for
- 473 the inexpensive testing of HLA-B*57:01. The Pharmacogenomics Journal 15(2), 196-
- 474 200. https://doi.org/10.1038/tpj.2014.48
- 475 Cavanaugh, S. E., & Bathrick, A. S. (2018). Direct PCR amplification of forensic touch and
- other challenging DNA samples: A review. Forensic Science International: Genetics, 32,
- 477 40-49. https://doi.org/10.1016/j.fsigen.2017.10.005
- 478 Davalieva, K., & Efremov, G. D. (2010). Influence of salts and pcr inhibitors on the
- amplification capacity of three thermostable DNA polymerases. *Macedonian Journal of*
- 480 *Chemistry and Chemical Engineering, 29*(1), 57-62.
- 481 https://doi.org/10.20450/mjcce.2010.173
- 482 Diaz-Ferguson, E. E., & Moyer, G. R. (2014,). History, applications, methodological issues and
- perspectives for the use of environmental DNA (eDNA) in marine and freshwater

484 environments. Revista de Biología Tropical 62(4), 1273-1284. 485 https://doi.org/10.15517/rbt.v62i4.13231 486 Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T. (2015). Use of 487 droplet digital PCR for estimation of fish abundance and biomass in environmental DNA 488 surveys. *PLoS ONE*, 10(3), e0122763. https://doi.org/10.1371/journal.pone.0122763 489 Eichmiller, J. J., Bajer, P. G., & Sorensen, P. W. (2014). The Relationship between the 490 Distribution of Common Carp and Their Environmental DNA in a Small Lake. PLoS 491 ONE, 9(11), e112611. https://doi.org/10.1371/journal.pone.0112611 492 Everts, T., Halfmaerten, D., Neyrinck, S., De Regge, N., Jacquemyn, H., & Brys, R. (2021). 493 Accurate detection and quantification of seasonal abundance of American bullfrog 494 (Lithobates catesbeianus) using ddPCR eDNA assays. Scientific Reports 11(1), 11282. 495 https://doi.org/10.1038/s41598-021-90771-w 496 Falzone, L., Musso, N., Gattuso, G., Bongiorno, D., Palermo, C. I., Scalia, G., Libra, M., & 497 Stefani, S. (2020). Sensitivity assessment of droplet digital PCR for SARS-CoV-2 498 detection. International Journal of Molecular Medicine, 46(3), 957-964. 499 https://doi.org/10.3892/ijmm.2020.4673 Farrell, J. A., Whitmore, L., & Duffy, D. J. (2021). The Promise and Pitfalls of Environmental 500 501 DNA and RNA Approaches for the Monitoring of Human and Animal Pathogens from 502 Aquatic Sources. BioScience, 71(6), 609-625. https://doi.org/10.1093/biosci/biab027 503 Gillum, J. (2014). Development and application of a quantitative real-time PCR assay for the 504 globally invasive tunicate Styela clava. Management of Biological Invasions, 5(2), 133-505 142. https://doi.org/10.3391/mbi.2014.5.2.06 506 Harper, L. R., Buxton, A. S., Rees, H. C., Bruce, K., Brys, R., Halfmaerten, D., Read, D. S., 507 Watson, H. V., Sayer, C. D., Jones, E. P., Priestley, V., Mächler, E., Múrria, C., Garcés-508 Pastor, S., Medupin, C., Burgess, K., Benson, G., Boonham, N., Griffiths, R. A., Lawson 509 Handley, L., & Hänfling, B. (2018). Prospects and challenges of environmental DNA 510 (eDNA) monitoring in freshwater ponds. *Hydrobiologia*, 826(1), 25-41. https://doi.org/10.1007/s10750-018-3750-5 511 512 Harrison, J. B., Sunday, J. M., & Rogers, S. M. (2019). Predicting the fate of eDNA in the 513 environment and implications for studying biodiversity. *Proceedings of the Royal Society* 514 B: Biological Sciences, 286(1915), 20191409. https://doi.org/10.1098/rspb.2019.1409 515 Hedman, J., Nordgaard, A., Dufva, C., Rasmusson, B., Ansell, R., & Radstrom, P. (2010). 516 Synergy between DNA polymerases increases polymerase chain reaction inhibitor 517 tolerance in forensic DNA analysis. Analytical Biochemistry, 405(2), 192-200. https://doi.org/10.1016/j.ab.2010.06.028 518 519 Hinlo, R., Gleeson, D., Lintermans, M., & Furlan, E. (2017). Methods to maximise recovery of 520 environmental DNA from water samples. PLoS ONE, 12(6), e0179251. 521 https://doi.org/10.1371/journal.pone.0179251 Itakura, H., Wakiya, R., Sakata, M. K., Hsu, H. Y., Chen, S. C., Yang, C. C., Huang, Y. C., Han, 522

Y. S., Yamamoto, S., & Minamoto, T. (2020). Estimations of Riverine Distribution,

524 525	Abundance, and Biomass of Anguillid Eels in Japan and Taiwan Using Environmental DNA Analysis. <i>Zoological Studies</i> , <i>59</i> , e17. https://doi.org/10.6620/ZS.2020.59-17
526 527 528	Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019). Particle Size Distribution of Environmental DNA from the Nuclei of Marine Fish. <i>Environmental Science & Technology</i> , <i>53</i> (16), 9947-9956. https://doi.org/10.1021/acs.est.9b02833
529	Kaps, M. L., W. (2009). Biostatistics for Animal Science. An Introductory Text (2nd ed.). Cabi.
530 531	Keough, M. J., & Chernoff, H. (1987). Dispersal and Population Variation in the Bryozoan <i>Bugula Neritina</i> . <i>Ecology</i> , 68(1), 199-210. https://doi.org/10.2307/1938820
532 533 534 535	Kim, P., Kim, D., Yoon, T. J., & Shin, S. (2018). Early detection of marine invasive species, <i>Bugula neritina</i> (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. <i>Marine Environmental Research</i> , <i>139</i> , 1-10. https://doi.org/10.1016/j.marenvres.2018.04.015
536 537 538	Kitpipit, T., Thanakiatkrai, P., & Chotigeat, W. (2013). Direct PCR-FINS: Wildlife species identification without DNA extraction. <i>Forensic Science International: Genetics Supplement Series</i> , 4(1), e364-e365. https://doi.org/10.1016/j.fsigss.2013.10.185
539 540 541 542 543	Klymus, K. E., Merkes, C. M., Allison, M. J., Goldberg, C. S., Helbing, C. C., Hunter, M. E., Jackson, C. A., Lance, R. F., Mangan, A. M., Monroe, E. M., Piaggio, A. J., Stokdyk, J. P., Wilson, C. C., & Richter, C. A. (2020). Reporting the limits of detection and quantification for environmental DNA assays. <i>Environmental DNA</i> , 2(3), 271-282. https://doi.org/10.1002/edn3.29
544 545 546	Kokkoris, V., Vukicevich, E., Richards, A., Thomsen, C., & Hart, M. M. (2021). Challenges Using Droplet Digital PCR for Environmental Samples. <i>Applied Microbiology, 1</i> (1), 74-88. https://doi.org/10.3390/applmicrobiol1010007
547 548 549	Kuffel, A., Gray, A., & Daeid, N. N. (2021). Impact of metal ions on PCR inhibition and RT-PCR efficiency. <i>International Journal of Legal Medicine</i> , 135(1), 63-72. https://doi.org/10.1007/s00414-020-02363-4
550 551 552 553	Lacoursière-Roussel, A., Côté, G., Leclerc, V., Bernatchez, L., & Cadotte, M. (2016). Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. <i>Journal of Applied Ecology</i> , <i>53</i> (4), 1148-1157. https://doi.org/10.1111/1365-2664.12598
554 555 556	Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. <i>Journal of Visualized Experiments</i> (63), e3998. https://doi.org/10.3791/3998
557 558 559 560	Mauvisseau, Q., Davy-Bowker, J., Bulling, M., Brys, R., Neyrinck, S., Troth, C., & Sweet, M. (2019). Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate. <i>Scientific Reports</i> , <i>9</i> (1), 14064. https://doi.org/10.1038/s41598-019-50571-9
561 562 563	McDermott, G. P., Do, D., Litterst, C. M., Maar, D., Hindson, C. M., Steenblock, E. R., Legler, T. C., Jouvenot, Y., Marrs, S. H., Bemis, A., Shah, P., Wong, J., Wang, S., Sally, D., Javier, L., Dinio, T., Han, C., Brackbill, T. P., Hodges, S. P., Ling, Y., Klitgord, N.,

Carman, G. J., Berman, J. R., Koehler, R. T., Hiddessen, A. L., Walse, P., Bousse, L., Tzonev, S., Hefner, E., Hindson, B. J., Cauly, T. H., 3rd, Hamby, K., Patel, V. P., Regan, J. F., Wyatt, P. W., Karlin-Neumann, G. A., Stumbo, D. P., & Lowe, A. J. (2013). Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. <i>Analytical Chemistry</i> , 85(23), 11619-11627. https://doi.org/10.1021/ac403061n
Mora, A., Abdel-Kader, N., & Maklad, S. (2013). Detection of Neisseria meningitidis DNA in blood samples using direct-PCR test. <i>Egyptian Pharmaceutical Journal</i> , <i>12</i> (2). https://doi.org/10.4103/1687-4315.124005
Moushomi, R., Wilgar, G., Carvalho, G., Creer, S., & Seymour, M. (2019). Environmental DNA size sorting and degradation experiment indicates the state of <i>Daphnia magna</i> mitochondrial and nuclear eDNA is subcellular. <i>Scientific Reports</i> , <i>9</i> (1), Article: 12500. https://doi.org/10.1038/s41598-019-48984-7
Mubarak, S. M., Al-Koofee, D. A., Radhi, O. A., Ismael, J. M., & Al-Zubaidi, Z. F. (2020). An Optimization and Common Troubleshooting Solving in Polymerase Chain Reaction Technique. <i>Systematic Reviews in Pharmacy 11</i> (2), 427-436. https://doi.org/10.5530/srp.2020.2.63
Nakao, H., & Popovic, T. (1997). Development of a direct PCR assay for detection of the diphtheria toxin gene. <i>Journal of Clinical Microbiology</i> , <i>35</i> (7), 1651-1655. https://doi.org/10.1128/jcm.35.7.1651-1655.1997
Pacocha, N., Scheler, O., Nowak, M. M., Derzsi, L., Cichy, J., & Garstecki, P. (2019). Direct droplet digital PCR (dddPCR) for species specific, accurate and precise quantification of bacteria in mixed samples. <i>Analytical Methods</i> , 11(44), 5730-5735. https://doi.org/10.1039/c9ay01874c
Pawlowski, J., Apotheloz-Perret-Gentil, L., & Altermatt, F. (2020). Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. <i>Molecular Ecology</i> , 29(22), 4258-4264. https://doi.org/10.1111/mec.15643
Rourke, M. L., Fowler, A. M., Hughes, J. M., Broadhurst, M. K., DiBattista, J. D., Fielder, S., Wilkes Walburn, J., & Furlan, E. M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. <i>Environmental DNA</i> , 4(1), 9-33. https://doi.org/10.1002/edn3.185
Rourke, M. L., Walburn, J. W., Broadhurst, M. K., Fowler, A. M., Hughes, J. M., Fielder, D. S., DiBattista, J. D., & Furlan, E. M. (2023). Poor utility of environmental DNA for estimating the biomass of a threatened freshwater teleost; but clear direction for future candidate assessments. <i>Fisheries Research</i> , <i>258</i> . https://doi.org/10.1016/j.fishres.2022.106545
Schweiss, K. E., Lehman, R. N., Drymon, J. M., & Phillips, N. M. (2019). Development of highly sensitive environmental DNA methods for the detection of Bull Sharks, Carcharhinus leucas (Müller and Henle, 1839), using Droplet Digital™ PCR. <i>Environmental DNA</i> , 2(1), 3-12. https://doi.org/10.1002/edn3.39

604	Sedlak, R. H., Kuypers, J., & Jerome, K. R. (2014). A multiplexed droplet digital PCR assay
605	performs better than qPCR on inhibition prone samples. Diagnostic Microbiology and
606	Infectious Disease, 80(4), 285-286, https://doi.org/10.1016/i.diagmicrobio.2014.09.004

- Shehadul Islam, M., Aryasomayajula, A., & Selvaganapathy, P. (2017). A Review on Macroscale and Microscale Cell Lysis Methods. *Micromachines*, 8(3).
- 609 https://doi.org/10.3390/mi8030083
- 610 Sidstedt, M., Romsos, E. L., Hedell, R., Ansell, R., Steffen, C. R., Vallone, P. M., Radstrom, P.,
- & Hedman, J. (2017). Accurate Digital Polymerase Chain Reaction Quantification of
- Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases. *Analytical*
- 613 *Chemistry*, 89(3), 1642-1649. https://doi.org/10.1021/acs.analchem.6b03746
- 614 Stojan, I., Trumbic, Z., Lepen Pleic, I., & Santic, D. (2023). Evaluation of DNA extraction
- methods and direct PCR in metabarcoding of mock and marine bacterial communities.
- 616 Frontiers in Microbiology, 14, 1151907. https://doi.org/10.3389/fmicb.2023.1151907
- R Core Team. (2023). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. www.r-project.org
- Templeton, J. E., Taylor, D., Handt, O., Skuza, P., & Linacre, A. (2015). Direct PCR Improves
- the Recovery of DNA from Various Substrates. *Journal of Forensic Sciences*, 60(6),
- 621 1558-1562. https://doi.org/10.1111/1556-4029.12843
- 622 Tillotson, M. D., Kelly, R. P., Duda, J. J., Hoy, M., Kralj, J., & Quinn, T. P. (2018).
- 623 Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at
- fine spatial and temporal scales. *Biological Conservation*, 220, 1-11.
- https://doi.org/10.1016/j.biocon.2018.01.030
- Trindade-Silva, A. E., Lim-Fong, G. E., Sharp, K. H., & Haygood, M. G. (2010). Bryostatins:
- biological context and biotechnological prospects. Current Opinion in Biotechnology,
- 628 21(6), 834-842. https://doi.org/10.1016/j.copbio.2010.09.018
- 629 Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., Lodge, D. M., & Gilbert,
- M. (2014). Particle size distribution and optimal capture of agueous macrobial eDNA.
- 631 *Methods in ecology and evolution, 5*(7), 676-684. https://doi.org/10.1111/2041-
- 632 210x.12206
- 633 Wilcox, T. M., McKelvey, K. S., Young, M. K., Lowe, W. H., & Schwartz, M. K. (2015).
- Environmental DNA particle size distribution from Brook Trout (*Salvelinus fontinalis*).
- 635 Conservation Genetics Resources, 7(3), 639-641. https://doi.org/10.1007/s12686-015-
- 636 0465-z
- Wood, S. A., Biessy, L., Latchford, J. L., Zaiko, A., von Ammon, U., Audrezet, F., Cristescu, M.
- E., & Pochon, X. (2020). Release and degradation of environmental DNA and RNA in a
- marine system. Science of the Total Environment, 704, Article: 135314.
- https://doi.org/10.1016/j.scitotenv.2019.135314
- Wood, S. A., Pochon, X., Ming, W., von Ammon, U., Woods, C., Carter, M., Smith, M., Inglis,
- G., & Zaiko, A. (2019). Considerations for incorporating real-time PCR assays into
- routine marine biosecurity surveillance programmes: a case study targeting the

PeerJ

644 645	Mediterranean fanworm (Sabella spallanzanii) and club tunicate (Styela clava) (1). Genome, 62(3), 137-146. https://doi.org/10.1139/gen-2018-0021
646 647 648	Yates, M. C., Derry, A. M., & Cristescu, M. E. (2021). Environmental RNA: A Revolution in Ecological Resolution? <i>Trends in Ecology & Evolution</i> , <i>36</i> (7), 601-609. https://doi.org/10.1016/j.tree.2021.03.001
649 650 651 652	Zaiko, A., Pochon, X., Garcia-Vazquez, E., Olenin, S., & Wood, S. A. (2018). Advantages and Limitations of Environmental DNA/RNA Tools for Marine Biosecurity: Management and Surveillance of Non-indigenous Species. <i>Frontiers in Marine Science</i> , <i>5</i> , 322. https://doi.org/10.3389/fmars.2018.00322
653 654 655 656	Zaiko, A., von Ammon, U., Stuart, J., Smith, K. F., Yao, R., Welsh, M., Pochon, X., & Bowers, H. A. (2022). Assessing the performance and efficiency of environmental DNA/RNA capture methodologies under controlled experimental conditions. <i>Methods in ecology and evolution</i> , <i>13</i> (7), 1581-1594. https://doi.org/10.1111/2041-210x.13879
657 658 659	Zhao, Y., Xia, Q., Yin, Y., & Wang, Z. (2016). Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri. <i>PLoS ONE, 11</i> (7), e0159004. https://doi.org/10.1371/journal.pone.0159004

Table 1(on next page)

Table 1: Biomass of non-indigenous species used in aquarium experiment

The biomass of the *Sabella spallanzanii*, *Bugula neritina* and *Styela clava* grouped by tank used in the aquarium experiment. The total biomass of each species was determined as the weight of individuals within the respective tank. Depending on the total weight within a tank, each species was assigned a classification of high, medium, or low biomass based on relative weight within species.

Tank	Species	Total weight of species in the tank (g)	Number of Organism in the tank	Referred Biomass
	Sabella spallanzanii	19.8	2	Medium
1	Styela clava	9.6	1	High
	Bugula neritina	4.7	2	High
	Sabella spallanzanii	32.7	3	High
2	Styela clava	7.6	1	Medium
	Bugula neritina	2.2	1	Medium
	Sabella spallanzanii	6.3	1	Low
3	Styela clava	4.5	1	Low
	Bugula neritina	0.4	1	Low

Table 2(on next page)

Table 2: Species-specific primers and probes

Species-specific primers and probes used in direct-digital droplet polymerase chain reaction (direct-ddPCR) assay to the target marine non-indigenous species; *Sabella spallanzanii*, *Bugula neritina* and *Styela clava*.

Target Species/Region	Reference	Target size (bp)	Primers & Probe	Sequence
	(Wood et		Sab3QPCR-F	5'-GCTCTTATTAGGCTCTGTGTTTG-3'
S. spallanzanii	al., 2019)	90	Sab3-QPCR-R	5'-CCTCTATGTCCAACTCCTCTTG-3'
			Sab3-QPCR-Probe	5'-FAM/AAATAGTTCATCCCGTCCCTGCCC/BkFQ-3'
	(Cillum		SC1F	5'-TCCGGCGGTAGTCCTTTTATT-3'
S. clava	(Gillum,	150	SC1R	5'-GAGATCCCCGCCAAATGTAA-3'
	2014)		SC1-Probe	5'-HEX/TTAGCTAGGAACTTGGCCCA/NFQ-3'
D. noritina	(Kim et	105	BuNe_SF	5'-GGTACATTATACTTTTTATTTGGAC-3'
B. neritina	al., 2018)	185	BuNe SR	5'-CCCCCA ATTATAACTGGTATG-3'

Table 3(on next page)

Table 3: Limit of Detection and Limit of Quantification for DNA in Seawater by Target Non-indigenous species (NIS)²

Page:35

Number: 1 Author: Subject: Highlight Date: 2023-12-25 15:42:43

Why capital letter on each word?

Number: 2 Author: Subject: Highlight Date: 2023-12-25 15:52:31

Once again, there is not a relevant meaning here to the origin of the examined species

Target Species	LOD (copies/μL)	LOQ (copies/μL)
Styela clava	0.234	24.0
Sabella spallanzanii	0.380	0.698
Bugula neritina	0.536	0.739

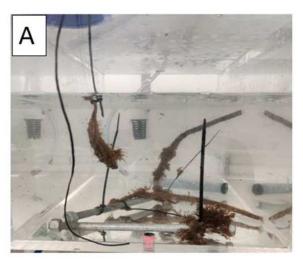
Figure 1

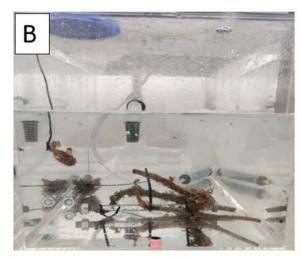
Figure 1: Experimental setup 1

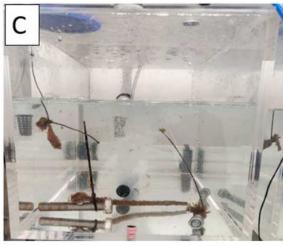
Sabella spallanzanii, Bugula neritina and Styela clava during the aquarium experiments.

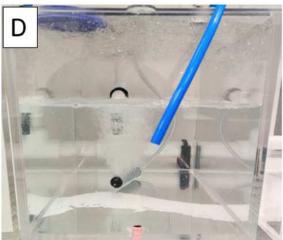
Photo of tanks taken at the start of the experiment time point (0 hours); (**A**) Tank 1, (**B**) Tank 2, (**C**) Tank 3, and (**D**) Tank 4 as a negative control.

Page:37




Number: 1 Author: Subject: Highlight Date: 2023-12-25 15:59:02

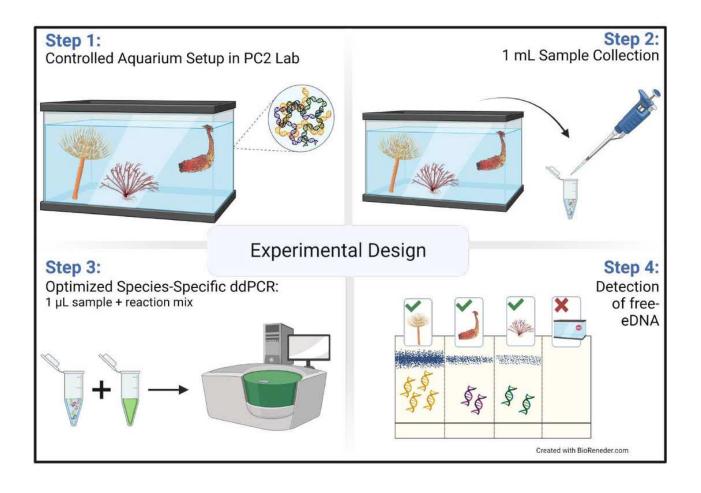

I'm not convinced about the contribution of this image.


The readers cannot really identify the different species in the image, especially those who have no previous knowledge of them (like me...)

If the authors wanted to show the different biomass between the tanks, they should indicate it somewhere here.

Figure 2

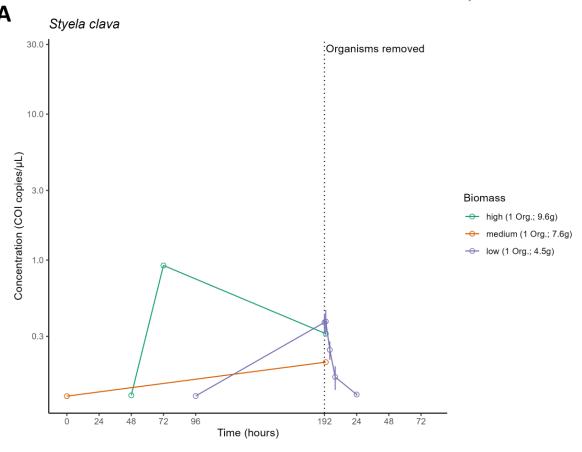
Figure 2: Aquarium experimental design 1


Schematic representation of the aquarium experiment. The schematic shows the 4-step sampling procedure carried out for the detection of free-floating extra-cellular environmental DNA (free-eDNA) with direct-droplet digital polymerase chain reaction (direct-ddPCR). The figure was created using Biorender.com.

Page:39

Number: 1 Author: Subject: Highlight Date: 2023-12-25 16:12:35

Again, what is PC2?
The figure is nice and aesthetic, but I think it fits better a graphical abstract then methods section. Maybe.



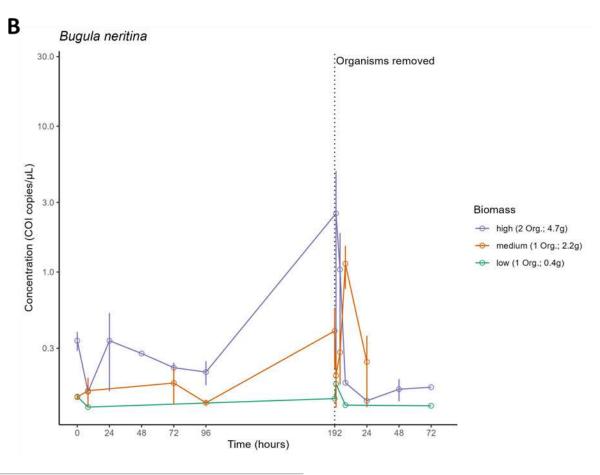

Figure 3(on next page)

Figure 3: Extracellular free floating environmental DNA detected for non-indigenous species by tank

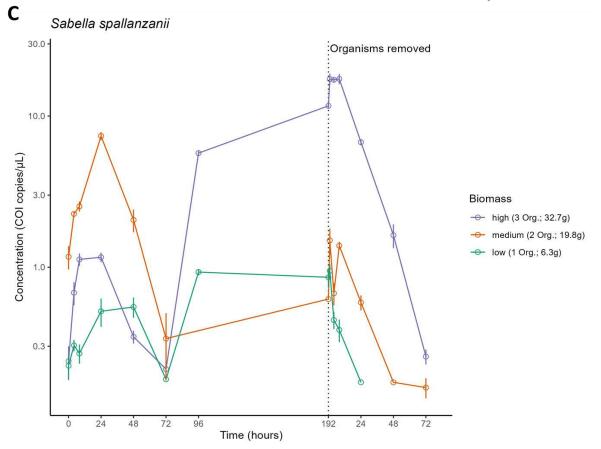
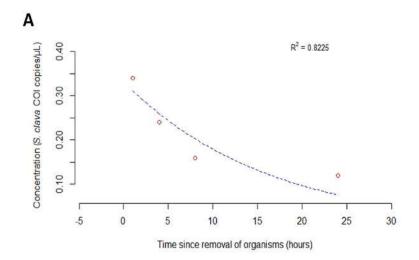
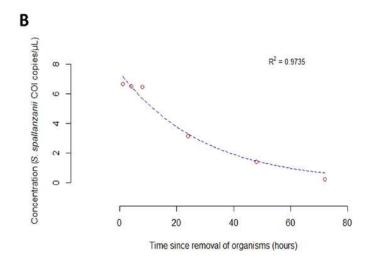
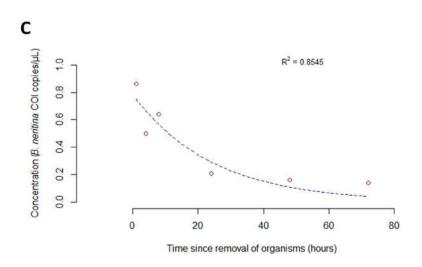

Concentration (copies/µL) of the *Cytochrome c oxidase subunit 1* (COI) gene present in the aquarium grouped by each tank containing different organism's biomass, referring to the number of organisms (Org.) and total weight of the species in grams, (high, medium, or low) for *Styela clava* (A), *Bugula neritina* (B) *and Sabella spallanzanii* (C). Note the biomass categories represent a classification system based on the number of organism and the total weight, in grams, of each species within the tank. The dotted line indicates the time of organism removal from the aquarium and sample collection after organism removal resets at time point 1 h. Y-axis is presented on a logarithmic scale.



Figure 4: Exponential model for detected extracellular free floating environmental DNA for non-indigenous species after organism removal


Time-dependent changes in average environmental DNA copies/ μ L (based on detection of the *Cytochrome c oxidase subunit 1* [COI] gene) for *Styela clava* (A), *Sabella spallanzanii* (B) and *Bugula neritina* (C) after organism removal. Data for each species across all three tanks were averaged and exponential model, $y=ae^{-bx}$, was applied to the raw data. R^2 values indicate the closeness of the fit of raw data to the fitted exponential model. Note different y-axis scales.


Page:44


Number: 1 Author: Subject: Highlight Date: 2023-12-25 16:19:44

I suggest to shorten the legends of Y axis. Species names can be inserted above. like Fig 3 Then authors can only write "eDNA copies/µL"

