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Meter scale variation in shrub dominance and soil moisture
structure Arctic arthropod communities
Rikke Reisner Hansen, Oskar Liset Pryds Hansen, Joseph J Bowden, Urs A Treier, Signe Normand, Toke Høye

The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species
both directly, through increased temperatures, and indirectly, through structural changes
in their habitats. Species are expected to exhibit idiosyncratic responses to structural
change, which calls for detailed investigations at the species level and community level.
Here, we investigate how arthropod assemblages of spiders and beetles respond to
variation in habitat structure at small spatial scales. We sampled transitions in shrub
dominance and soil moisture between three different habitats (fen, dwarf shrub heath and
tall shrub tundra) at three different sites along a fjord gradient in southwest Greenland,
using yellow pitfall cups. We identified 2547 individuals belonging to 47 species. We used
species richness estimation, indicator species analysis and latent variable modeling to
examine differences in arthropod community structure in response to habitat variation at
local (within site) and regional scale (between sites). We estimated species responses to
the environment by fitting species-specific generalized linear models with environmental
covariates. Species assemblages were segregated at the habitat and site level. Each
habitat hosted significant indicator species and species richness and diversity were
significantly lower in fen habitats. Assemblage patterns were significantly linked to
changes in soil moisture and vegetation height as well as geographic location. We show
that meter-scale variation among Arctic habitats affects arthropod community structure,
supporting the notion that the Arctic is a heterogenous environment. To gain sufficient
insight into temporal biodiversity change, we require detailed studies on species
distributions entailing species habitat preferences.
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23 Abstract 

24 The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both 

25 directly, through increased temperatures, and indirectly, through structural changes in their 

26 habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls 

27 for detailed investigations at the species level and community level. Here, we investigate how 

28 arthropod assemblages of spiders and beetles respond to variation in habitat structure at small 

29 spatial scales. We sampled transitions in shrub dominance and soil moisture between three 

30 different habitats (fen, dwarf shrub heath and tall shrub tundra) at three different sites along a 

31 fjord gradient in southwest Greenland, using yellow pitfall cups. We identified 2547 individuals 

32 belonging to 47 species. We used species richness estimation, indicator species analysis and 

33 latent variable modeling to examine differences in arthropod community structure in response to 

34 habitat variation at local (within site) and regional scale (between sites). We estimated species 

35 responses to the environment by fitting species-specific generalized linear models with 

36 environmental covariates. Species assemblages were segregated at the habitat and site level. 

37 Each habitat hosted significant indicator species and species richness and diversity were 

38 significantly lower in fen habitats. Assemblage patterns were significantly linked to changes in 

39 soil moisture and vegetation height as well as geographic location. We show that meter-scale 

40 variation among Arctic habitats affects arthropod community structure, supporting the notion 

41 that the Arctic is a heterogenous environment. To gain sufficient insight into temporal 

42 biodiversity change, we require detailed studies on species distributions entailing species habitat 

43 preferences. 

44 Keywords: Araneae, Coleoptera, biodiversity, habitat suitability, environmental gradients

45 Background

46 Understanding the factors that structure ecological communities on continental, regional and 

47 local scales provide the basis for understanding how global changes might affect species 

48 composition and biodiversity (Vellend et al. 2013; Dornelas et al. 2014). 

49 Climate change is happening at an accelerated pace in the Arctic (Callaghan et al. 2004; 

50 IPCC 2014) and altered moisture regimes and shrub expansion are two of the most prominent 

51 habitat altering phenomena caused by these changes (Rouse et al. 1997; Tape et al. 2006; Myers-
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52 Smith et al. 2011; Elmendorf et al. 2012). Shrub expansion and altered moisture regimes 

53 represent considerable consequences of climate change to the Arctic tundra; altering unique 

54 habitats such as open heath, wetlands and grasslands (ACIA 2004).  Firstly, warming in the 

55 Arctic has led to accelerated plant growth, particular for wooden plants, causing a shift towards 

56 greater shrub cover, and a northward migration of the tree line (Callaghan et al. 2011), increased 

57 biomass (Epstein et al. 2012) and changes in plant species composition (Walker et al. 2012). 

58 These trends are expected to continue during future climate change (Normand et al. 2013; 

59 Pearson et al. 2013). Secondly, a changing Arctic climate with changes in precipitation, glacial 

60 melt and permafrost degradation may alter the spatial extent of wetlands (Avis et al. 2011). In 

61 areas with continuous permafrost top soils become wetter due to the impermeable strata that 

62 prevent infiltration and percolation (Woo & Young 2006). Some areas with discontinuous 

63 permafrost, however, become dryer, due to increased net evapotranspiration and increased 

64 drainage due to permafrost thaw (Zona et al. 2009; Perreault et al. 2015). The long term 

65 persistence of Arctic wetlands is debated, but models using projected climate changes coupled 

66 with field studies indicate deterioration and ultimate destruction of Arctic wetlands (Woo & 

67 Young 2006). These habitat changes, both shrubification and wetland deterioration, will trigger 

68 several feedback loops within the climate system (Chapin et al. 2005) and may have profound 

69 effects on ecosystems (Post et al. 2009). In order to understand how these habitat changes affect 

70 Arctic biodiversity, we need to adequately describe how arctic species compositions respond to 

71 changes in the environment.

72 The alteration of habitats, due to e.g., shrub expansion into open tundra and changing 

73 wetland hydrology are likely to affect habitat availability for many organisms, through changes 

74 in species distribution, diversity and composition. Terrestrial arthropods (e.g. insects and spiders) 

75 in particular, are associated with specific habitat types and likely respond strongly to habitat 

76 changes in the Arctic (Bowden & Buddle 2010; Rich et al. 2013). Arthropods have long been 

77 recognized as valuable indicators of changing environments because of their relatively short 

78 lifecycles and their physiology being directly driven by the external environment (ectothermic). 

79 Studies of the impacts of habitat changes upon Arctic arthropod communities are, however, only 

80 beginning to emerge (Bowden & Buddle 2010; Rich et al. 2013; Sikes et al. 2013; Sweet et al. 

81 2014; Hansen et al. 2016). In spite of the common conception of the Arctic as a species poor and 

82 relatively homogenous environment, studies have shown that arthropod assemblages vary 
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83 substantially over short distances (Hansen et al. 2016), with species responding to local and 

84 regional climatic gradients (OLP. Hansen, unpublished work). Arthropod communities are 

85 expected to change in response to the direct effects of increasing temperatures and prolonged 

86 growing seasons (Høye et al. 2013; Høye et al. 2014), but also indirectly through changes in soil 

87 moisture and vegetation structure (Bowden & Buddle 2010; Hansen et al. 2016), changes to 

88 snowmelt dynamics (Høye et al. 2009; Bowden et al. 2015b) and shrub expansion (Rich et al. 

89 2013). Several studies indicate direct effects of temperature change on arthropods (Post et al. 

90 2009; Høye et al. 2013; Bowden et al. 2015a), but we do not yet fully comprehend the 

91 distribution of, or habitat requirements for the majority of Arctic arthropod species. 

92 Arctic and alpine tundra areas are vast, and the knowledge of geographical variation 

93 associated with recent environmental and ecosystem change is limited. In this study, we explore 

94 the influence of moisture regime and habitat structure on the composition and diversity of Arctic 

95 arthropod communities and investigate the site specific effects on the drivers of change. We 

96 propose the following hypothesis: Arctic arthropod assemblages and diversity vary with soil 

97 moisture and vegetation height at very small spatial scales (10 - 20 meters). Specifically, we 

98 compare beetle and spider communities sampled in different habitats (fen, dwarf shrub heath, 

99 and tall shrub tundra) at three sites along a large scale gradient. 

100 Methods

101 Study area and sampling design

102 Arthropods were sampled with pitfall traps from the 29th of June to the 23rd of July 2013 at three 

103 sites (1, 2 and 3) along the Godthaabsfjord in West Greenland (Fig 1). Site 1 was situated at the 

104 mouth of the fjord and thus characterized by a coastal climate with relatively high precipitation, 

105 narrow annual temperature range and topographic variation (app. 0 - 300 m.a.s.l.). The shrub 

106 community at site 1 was dominated by dwarf shrubs and a very sparse cover of tall shrub species 

107 like Salix glauca. Site 2 was low lying and flat and characterized by a mosaic of low shrub 

108 vegetation (<50 cm), dominated by S. glauca, mixed with Betula nana, Vaccinium uliginosum, 

109 Rhododendron groenlandicum and Empetrum nigrum. Site 3 was characterized by a continental 

110 climate and pronounced topographic variation (app. 0 – 600 m.a.s.l.) with well-defined tall shrub 

111 patches dominated by high growth of S. glauca and Alnus crispa (>50cm). These patches were 

PeerJ reviewing PDF | (2016:05:10489:0:0:CHECK 3 May 2016)

Manuscript to be reviewed

hannahbuckley
Sticky Note
for,

hannahbuckley
Sticky Note
such as

huber
Sticky Note
comma

huber
Sticky Note
comma

huber
Sticky Note
comma

huber
Sticky Note
comma

huber
Sticky Note
GPS locations of plots (or at least sites) would be useful. The map is decent, but since you have the precise data, a table with the exact locations would add value, particularly if someone else wants to come back to the exact same locations for temporal comparative work in the future.



112 mainly located at south facing slopes below 100 m.a.s.l. All dwarf shrub species at site 2 were 

113 also present at site 3. 

114 Moisture transitions (fen-heath) were sampled at sites 1 and 2, while transitions in 

115 vegetation height and cover of tall shrubs (heath-shrub) were sampled at sites 2 and 3. Four fen-

116 heath plots were established, two at site 1 and two at site 2. Each fen-heath plots consisted of two 

117 sub-plots placed ten meters apart and with each five meters to a distinct fen-heath transition zone 

118 (Fig. 2). Twelve heath-shrub plots were established at site 2 and site 3 (six at each site). Each 

119 heath-shrub plots consisted of two sub-plots 20 meters apart; one located at the center of a patch 

120 of tall shrubs and one in the adjacent open dwarf shrub heath. Each sub-plot was delineated by a 

121 circle with a five meter radius. At the center of each sub-plot, two yellow pitfall traps (nine cm 

122 diameter) were placed 50 centimeters apart (Fig 2). The traps were dug down such that the rim 

123 was flush with the surface. Pitfall traps were emptied twice, once halfway through and once at 

124 the end of the sampling period. Samples were stored separately.   

125  The following structural and environmental parameters were measured in each sub-plot: (i) 

126 percent cover of shrubs, herbs, graminoids and bare ground in six categories: 0%, 1‒20%, 

127 21‒40%, 41‒60%, 61‒80%, and 81‒100%, (ii) height (to the nearest 5 cm) of the most frequent 

128 vegetation height in the sub-plot. (iii) presence of plant species, (iv) slope in vertical meters 

129 between the highest and lowest point of the sub-plot, (v) aspect recorded using a handheld GPS 

130 and classified to nearest cardinal direction (North, South, East, and West), (vi) pH measured 

131 directly with a soil pH measurement kit, model HI 99121, (vii) soil type recorded as humus or 

132 sand.

133 Specimens and Data 

134 All spiders and beetles were sorted from the samples and the adult specimens were identified (by 

135 RRH) to species based on morphological characters using a Wild® M5A stereo microscope. 

136 Spiders were identified using the available literature through The World Spider Catalog (World 

137 Spider Catalog 2016) and Spiders of North America (Paquin & Dupérré 2003). Beetles were 

138 identified using both Scandinavian and North American literature (Lindroth 1985; Lindroth 

139 1986; Böcher 1988) and consulting the collection at the Natural History Museum Aarhus, 

140 Denmark. Specimens are preserved in 75% ethanol at the Natural History Museum Aarhus. The 
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141 dataset is available through the Global Biodiversity Information Facility (GBIF 2016). Not all 

142 juveniles could be assigned to species, so only adult specimens were included in the analysis. 

143 Data analysis

144 Sub-plots placed in dwarf shrub heath could potentially differ depending on the transition 

145 examined (fen-heath or shrub-heath). Therefore we created latent variable (LV) plots in the R 

146 package ‘boral’ (Hui 2016) for both plants and arthropods to visually assess if the heath sub-

147 plots in the fen-heath and shrub-heath plots groups were disguisable. In the latent variable plot 

148 for plant species composition, heath sub-plots were not segregated (Fig. S1) and all heath plots 

149 were hereafter treated as one category. 

150 The mean and standard error was calculated for significant environmental variables 

151 across all habitats at each separate site. We tested whether the variables used in the models 

152 differed significantly between sites and habitats with a T-test and ran a correlation analysis, 

153 based on Pearson’s correlation coefficient, of all potential variables. To counteract effects of 

154 potential under sampling, all analyses were carried out excluding singletons, thus also reducing 

155 effects of source-sink dynamics between habitats. All analyses were carried out in R version 

156 3.2.2. 

157 Species diversity

158 Species diversity was rarefied and extrapolated for investigation across habitats based on Hill 

159 numbers (q=0; species richness, q=1; Shannon diversity, q=2; Simpson diversity) and 

160 standardized by sample coverage (Chao & Jost 2012; Chao et al. 2014) using the iNEXT R-

161 package (Hsieh et al. 2014). We extrapolated to double the reference sample of the habitat with 

162 the smallest sample coverage (shrub). Samples were compared at base-coverage, estimated as a 

163 minimum of Ca and Cb, where Ca is maximum coverage at reference sample size and Cb is 

164 minimum coverage at two times reference sample size. iNEXT computes bootstrap confidence 

165 bands around the sampling curves, facilitating the comparisons of diversities across multiple 

166 assemblages. We then visually assessed if diversity measures differed across habitats.

167 We ran a species indicator analysis to assess the strength and statistical significance of 

168 the relationship between species abundance and the specific habitats. We used the function 
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169 ‘multipatt’ in the R package ‘indicspecies’ (De Cáceres et al. 2010). This analysis provides a 

170 specificity value ‘A’(0-1), which indicates the probability of a certain species occurring in a 

171 certain habitat as well as a sensitivity value ‘B’(0-1), which indicates how many of the plots 

172 belonging to a certain habitat the target species is located in. Significance (P < 0.05) is assessed 

173 based on the A and B values (Cáceres & Legendre 2009). In order to appoint a habitat categories 

174 to more species than significant indicator species, we described the habitat preferences of our 

175 target species, by assigning all species with an A value for a given habitat larger than 0.8 and a B 

176 value larger than 0.1 to that specific habitat. In this way the importance of the sensitivity value is 

177 downplayed and we describe habitat preferences more broadly.

178 Species composition

179 Traditional methods to visually investigate how arthropod species composition vary between 

180 habitats, such as non-metric multidimensional scaling (NMDS) have been shown to confound 

181 trends in location with changes in dispersion, leading to potentially misleading results (Warton et 

182 al. 2012). To avoid these issues while still enabling visualization, we employed LV modelling. 

183 LV modelling is a model based approach that explains community composition through a set of 

184 underlying latent variables to account for residual correlation, for example due to biotic 

185 interaction. This method offers the possibility to adjust the distribution family to accommodate 

186 count data via negative binomial distribution and better account for over-dispersion in count 

187 data. Thus, it accounts for the increasing mean-variance relationship without confounding 

188 location with dispersion (Hui et al. 2015). We modelled species distribution with two latent 

189 variables to enable visualization comparable to a two dimensional NMDS. From the latent 

190 variable model, we extracted the median values which we used as coordinates on ordination axes 

191 to represent species composition at plot level (Hui et al. 2015). We then tested the difference in 

192 local species composition between the paired samples (fen-heath or shrub-heath) for each 

193 transect using paired T-tests. We further studied how well the entire assemblage (both species 

194 abundance and composition) is explained by the environment. Again using latent variable 

195 modelling, we included the spatial variable ‘site’ and two environmental variables, ‘graminoid 

196 cover’ and ‘height class’, and to account for the expected species correlation, for example due to 

197 biotic interactions, we included two latent variables in the models. This way we ensured that our 

198 result remain valid even in the presence of residual variation (Warton et al. 2015). Vegetation 
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199 height and graminoid cover have higher resolutions compared to the classifications ‘fen’ and 

200 ‘shrub’ as these are measured on a continuous scale. We used vegetation height as a proxy for 

201 shrub treatment effects and cover of graminoids as a proxy for soil moisture. The gradients in 

202 these variables are representative of the moisture transition of fen-heath plot groups and the 

203 shrub dominance transition of the shrub-heath plot groups (Fig S2). In order to visualize how 

204 species correlations clustered due to the selected variables, a correlogram was drawn showing 

205 only the significant species correlations, as based on the 95% credible intervals excluding zero. 

206 We cross checked the species correlations with the results from the species indicator analysis to 

207 see if species correlations clustered in specific habitats. The model assumptions of mean-

208 variance and log-linearity were examined with residual vs. fit plots and a normal quantile plot 

209 and no transformation were needed.

210 To test the significance of and interactions between the environmental variables, we used 

211 a multivariate extension of General Linear Models (GLM’s) using the function ‘manyglm’ in the 

212 package ‘mvabund’ (Wang et al. 2012). This recently developed method offers the possibility to 

213 model distributions based on count data by assuming a negative binomial distribution. We tested 

214 for main effects of all measured variables and for an interaction between variables. Backwards 

215 selection based on Akaike’s Information Criteria (AIC) was employed to find the simplest model 

216 explaining the highest amount of variation in arthropod assemblages. We added the variable 

217 ‘site’ as a block effect to resample within site. 

218 Results

219 A total of 2547 individuals, constituting 45 species and 13 families were identified within the 

220 two orders: Araneae (2223 individuals, 7 families, 37 species) and Coleoptera (324 individuals, 6 

221 families, 8 species). We found a species of sheet web spider [Wabasso cacuminatus (Millidge, 

222 1984)] not previously known from Greenland, represented by one individual. One species 

223 [Pelecopsis mengei, (Simon, 1884)], represented in our samples by 3 individuals, remained 

224 unknown from Greenland until recently (Marusik 2015; Hansen et al. 2016) (Table 1). 

225 Extrapolated species richness (q = 0) did not differ significantly due to overlapping 

226 confidence intervals but there was a trend towards higher species richness in heath sub-plots, 

227 lower in shrub sub-plots and lowest in fen sub-plots (Fig. 3). The same pattern was observed for 
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228 Shannon diversity (q = 1) as well as for Simpson diversity (q = 2) however both these indices 

229 differed significantly between habitats (Fig. 3).

230 The three species significantly (P < 0.05) associated with fen habitats were all sheet web 

231 spiders. Erigone whymperi, Mecynargus paetulus and Wabasso quaestio. Just one species, the 

232 ladybug Coccinella transversoguttata, was significant in the heath plots. Shrub habitats housed 

233 six significant species and all of them were spider species: the comb-footed spider Ohlertidion 

234 lundbecki (Sørensen, 1894), and five species of sheet web spiders: Dismodicus decemoculatus, 

235 Improphantes complicates, Pocadicnemis americana, Semljicola obtusus, Sisicus apertus (Table 

236 1).                               

237 The LV plots showed that the plant species composition of the shrub sub-plots 

238 overlapped with the composition of the heath plots (Fig. S1), but vegetation height was 

239 significantly different (Table 2). The plant species composition of the fen plots was different 

240 from both the heath and shrub sub-plots (Fig. S1). Arthropod species composition was 

241 segregated both at site and habitat level, but the distribution of sub-plots in the LV arthropod plot 

242 indicated interaction between site and treatment (Fig. 4). 

243 Vegetation height in the shrub sub-plots at site 2 was significantly lower than at site 3 

244 (T30 = -2.75, P = 0.02), while the cover of graminoids did not differ significantly from the fen 

245 sub-plots at site 1 to the fen sub-plots at site 2 (T30 = -0.44, P = 0.66). Cover of graminoids was 

246 significantly lower for heath sub-plots compared to fen sub-plots both at site 1 (T30 = -4.99, P = 

247 0.0002) and at site 2 (T30 = -3.23, P = 0.005). Vegetation height differed significantly between 

248 shrub and heath treatments both at site 2 (T30 = -4.09, P = 0.008) and at site 3 (T30 = -6.14, P = 

249 0.002) with lower vegetation height in the heath sub-plots compared to shrub sub-plots (Table 2 

250 and Fig. S2).

251 Arthropod species compositions differed significantly due to different moisture regimes 

252 (Dev1,55 = 110.3, P = 0.001) and different height classes (Dev1,55 = 117.9, P = 0.001).  Without 

253 resampling at the site level, there was a significant interaction between cover of graminoid 

254 species and site (Dev2,53 = 88.9, P = 0.002), but no significant interaction between height class 

255 and site (Dev2,53 = 37.9, P = 0.46). Arthropod species compositions differed significantly 

256 between the local fen-heath transitions, but for site 2 only one latent variable axis differed 
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257 significantly between fen-heath transitions. The local shrub-heath transects differed significantly 

258 for both axes and both sites (Table 3). The latent variable model which included site and 

259 treatment effects showed that species were highly correlated as an effect of site, vegetation 

260 height and graminoid cover. When compared to the indicator species analysis, the clusters of 

261 species could be assigned to specific habitats (Fig 5). There were no significant residual species 

262 correlations.

263

264 Discussion

265 Although Arctic tundra is often perceived as a relative homogenous biome, it consists of a wide 

266 range of habitat types due to strong environmental transitions occurring over short spatial scales. 

267 In this study, we have demonstrated clear effects of vegetation height and soil moisture on 

268 diversity and composition of spiders and beetles in low Arctic Greenland. This effect is evident 

269 within 10 - 20 meters. Fens, heath and shrub vegetation hosted distinct arthropod communities 

270 differing in both composition and diversity. While previous studies have emphasized the 

271 importance of vegetation structure as predictors of Arctic arthropod communities (Bowden & 

272 Buddle 2010; Rich et al. 2013; Sweet et al. 2014), it has not been demonstrated that such effects 

273 are visible at the scale of meters.

274 Existing literature generally agrees with the habitat classifications we have assigned the 

275 species in this study. According to existing descriptions of habitat preferences, the wetland 

276 species we find in this study are found strictly in wet open habitats, whereas both shrub and 

277 heathland species mostly have a more general distribution (Böcher 2015; Marusik 2015), 

278 indicating a higher degree of habitat specialization in the fens. The sheet web spider Erigone 

279 arctica was significantly linked to wet fen habitats in an alpine study site in West Greenland 

280 (Hansen et al. 2016) and in this study E. arctica were also linked to fen plots further suggesting 

281 habitat specialization. We found the lowest diversity in the fens which are spatially limited, 

282 compared to much more wide spread heathland habitats. Both tall shrub tundra and dwarf shrub 

283 heath are comprised of different habitats with open patches, moist areas and varying vegetation 

284 structure. Such variation in habitat structure likely leads to higher diversity compared to the fen 
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285 habitats, which are rather homogenous. This also became evident in the correlation plot where 

286 most of the species clusters could be assigned to tall shrub or heath habitats. 

287 This particular study area is characterized as low Arctic with discontinuous permafrost 

288 unaffected by glacial meltwater. Models for this region suggests increased evapotranspiration 

289 and precipitation (Rawlins et al. 2010). Increased drainage due to permafrost melt coupled with 

290 evapotranspiration is likely to lead to wetland deterioration. Shrubification has been forecasted to 

291 be most pronounced at the boundary between high and low Arctic where permafrost is melting 

292 and in areas where soil moisture is greatest (Myers-Smith et al. 2015). In the Godthåbsfjord, it is 

293 therefore likely that shrub expansion will be most notable in the fens and snow-beds. With 

294 shrubification (Myers-Smith et al. 2011; Elmendorf et al. 2012), as well as, increased land use 

295 such as forestry and agriculture (ACIA 2004), wetland habitats are at risk (CAFF 2013). Our 

296 results suggest that wetland deterioration as well as shrubification will strongly affect arthropod 

297 communities and may compromise the living conditions of individual specialized species. 

298 We found an interaction between site and treatment for fen habitats, suggesting that the 

299 fens differ between sites. Wetlands with coastal proximity are known to be impacted by salt 

300 influx from the sea (Woo & Young 2006). This is a likely explanation for the difference in 

301 arthropod composition in the fens between the coastal (site 1) and intermediate site (site 2) as 

302 graminoid cover does not change significantly between sites. There are, however, many factors 

303 influencing wetland hydrology (Woo & Winter 1993) and salinity may not be the only 

304 difference. Even though plant species composition showed clear segregation of wet and dry 

305 plots, conditions may be drier at the intermediate site than at the coastal site, where summer 

306 precipitation is higher. Plant species composition reflects an integration of seasonal variation in 

307 soil moisture conditions (Daniels et al. 2011), such that they may not reflect sudden soil moisture 

308 changes. The variation in moisture regime only partially explained arthropod species 

309 composition at the intermediate site and supports the idea of drier conditions at the intermediate 

310 site. 

311 We expected the effect of vegetation height to be less pronounced at the intermediate site 

312 due to the patchiness structure of the shrubs and overall lower vegetation. Yet, we did not find an 

313 interaction between site and treatment. We studied mostly mobile predator species. The few 

314 herbivores like the weevils Otiorynchus arcticus (O. Fabricius, 1780) and Otiorynchus nodosus 
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315 (Müller, 1764), are mostly found in open heath plots with low vegetation. It is conceivable to 

316 think that even a small change in vegetation height has an effect on the surface active predator 

317 species. The web builders, like sheet web spiders, require some amount of vegetation structure to 

318 form webs, but even low shrubs provide structure and shelter. Rich et al. (2013) found that 

319 overall arthropod abundance and species richness increased in shrub plots in arctic Alaska, but 

320 suggested that for groups like wolf spiders and other active hunters, full shrub encroachment of 

321 open habitats could be detrimental. Our results support this notion. 

322 Conclusion  

323 We have established a baseline of species occurrence in relation to transition in soil moisture and 

324 shrub dominance which will facilitate future assessment of changes in Arctic arthropod 

325 communities, where these transitions in habitat structure are likely to change. The variation in 

326 community composition at the scales of meters was surprising and suggests drastic changes in 

327 arthropod species compositions given continuation of shrubification and wetland deterioration. 

328 We found that the strength of the environmental predictor variables varied among sites. 

329 Understanding the sources of such site variation is an important topic for future studies. Two 

330 important steps are needed to further the knowledge of arthropod responses to changing habitats. 

331 Primarily, we need information on species occurrence across multiple taxa and multiple 

332 environmental gradients. Secondly, we need further studies quantifying spatial variability and 

333 change in the primary environmental gradients. 
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518

519

520

521 Tables

522 Table 1: List of arthropod species sampled and their abundance in three habitats; fen, dwarf 
523 shrub heath, and tall shrub tundra at three sites along the Nuuk fiord in Western Greenland. The 
524 last column shows the results of a species indicator analysis (for details see main text). Species 
525 were assigned to one of the three habitats if A (specificity value) > 0.8 and B (sensitivity value) 
526 > 0.1. Significance (p < 0.05) is indicated with an *. The table is sorted by order, family, and 
527 species, respectively. 

Order Family Species Abundance Habitat
Fen Heath Shrub

Araneae Dictynidae Dictyna major (Menge, 1869) 1 No classification
Gnaphosidae Haplodrassus signifer (C.L. Koch, 1839) 1 No classification
Hahniidae Hahnia glacialis (Sørensen, 1898) 1 7 1 No classification
Linyphiidae Agyneta jacksoni (Simon, 1884) 3 8 1 No classification

Agyneta nigripes (Brændegård, 1937) 2 3 Fen and heath
Bathyphantes simillimus (L. Koch, 1879) 1 No classification
Dismodicus decemoculatus (Emerton, 1852) 1 2 10 Shrub*
Erigone arctica (White, 1852) 6 Fen
Erigone psycrophila (Thorell, 1871) 1 No classification
Erigone whymperi (O.P. Cambridge, 1877) 8 Fen*
Hilaira herniosa (Thorell, 1875) 1 No classification
Hybauchenidium gibbosum (Sørensen, 1898) 5 3 Heath and shrub
Hypsosinga groenlandica (Simon, 1889) 2 2 4 Heath and shrub
Improphantes complicatus (Emerton, 1882) 2 8 Shrub*
Lepthyphantes turbatrix (O.P. Cambridge, 1877) 1 No classification
Mecynargus borealis (Jackson, 1930) 4 Heath
Mecynargus morulus (O.P. Cambridge, 1873) 2 1 Heath and shrub
Mecynargus paetulus (O.P. Cambridge, 1875) 33 Fen*
Oreonetides vaginatus (Thorell, 1872) 1 No classification
Pelecopsis mengei (Simon, 1884) 2 1 Heath and shrub
Pocadicnemis americana (Millidge, 1976) 6 18 Shrub*
Sciastes extremus (Holm, 1967) 1 No classification
Scotinotylus sacer (Crosby,1929) 5 Shrub
Semljicola obtusus (Emerton, 1914) 3 6 15 Shrub*
Sisicus apertus (Holm, 1939) 1 3 Shrub*
Tiso aestivus (L. Koch, 1872) 1 31 1 Heath
Wabasso cacuminatus (Millidge, 1984) 1 No classification
Wabasso quaestio (Chamberlin, 1948) 12 Fen*
Walckenaeria karpinskii (O.P. Cambridge, 1873) 6 21 Fen and heath*

Thomisidae Xysticus durus (Sørensen, 1898) 17 Heath
Lycosidae Arctosa insignita (Thorell, 1872) 17 29 2 Fen and heath*

Pardosa furcifera (Thorell, 1875) 524 552 257 No classification
Pardosa groenlandica (Thorell, 1872) 17 23 8 No classification
Pardosa hyperborea (Thorell, 1872) 6 347 140 Heath and shrub*

Philodromidae Thanatus arcticus (Thorell, 1872) 2 10 Fen and heath
Theridiidae Robertus fuscus (Emerton, 1894) 1 No classification

Ohlertidion lundbecki (Sørensen, 1898) 2 Shrub
Coleoptera Byrrhidae Byrrhus fasciatus (Forster, 1771) 1 11 Heath

Carabidae Patrobus septentrionis (Dejean, 1821) 50 17 23 Fen and shrub*
Coccinellidae Coccinella transversoguttata (Falderman, 1835) 51 2 Heath*
Cryptophagidae Caenoscelis ferruginea (Sahlberg, 1820) 38 2 Heath and shrub
Curculionidae Otiorynchus arcticus (O. Fabricius, 1780) 1 20 1 Heath

Otiorynchus nodosus (Müller, 1764) 18 66 19 No classification
Staphylinidae Mycetoporus nigrans (Mäklin, 1853) 2 No classification

Quedius fellmanni (Zetterstedt, 1838) 2 No classification

PeerJ reviewing PDF | (2016:05:10489:0:0:CHECK 3 May 2016)

Manuscript to be reviewed



528

529

530

531

532

533

534 Table 2: Mean (±S.E) of the environmental variables included in GLM’s and latent variable 
535 models, showing the difference between sites and treatments. Graminoid cover was measured in 
536 six categories: 0%, 1‒20%, 21‒40%, 41‒60%, 61‒80%, and 81‒100%. Vegetation height was 
537 measured (classified to the nearest 5 cm) as the height of the most frequent vegetation height in 
538 the sub-plot. 

Site Habitat Vegetation height 
(height classes)

Graminoid 
(percent cover)

Site 1 Heath 2.6 (0.2) 15 (5)
Fen 2.5 (0.2) 55 (6.3)

Site 2 Heath 2.4 (0.2) 18.6 (3.7)
Fen 2.3 (0.3) 75 (6.3)
Shrub 7.5 (1.2) 10.3 (3.5)

Site 3 Heath 3.2 (0.4) 12.7 (11.4)
Shrub 28.5 (4.1) 4 (1.9)
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558 Table 3: Paired T test of the local transitions in soil moisture and shrub dominance. LV1 and 
559 LV2 represent the first and second coordinate of the latent variable.

Model Residual degrees of 

freedom

Estimates T P

Fen transect site 1 LV1 7 - 0.86 - 5.32 0.001

Fen transect site 1 LV2 7 - 0.43 - 4.78 0.002

Fen transect site 2 LV1 7 - 1.70 - 0.26 0.13

Fen transect site 2 LV2 7 - 0.37 - 3.21 0.02

Shrub transect site 2 LV1 5 - 0.72 - 3.90 0.01

Shrub transect site 2  LV2 5 - 0.35 - 3.10 0.03

Shrub transect site 3 LV1 5 - 1.16 - 5.50 0.003

Shrub transect site 3 LV2 5 - 0.62 - 3.28 0.02
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578 Figures

579 Fig. 1: Map of the Godthåbsfjord area, South-West Greenland (64º 11' N, 51º 44' W), showing 
580 the three study sites (1, 2 and 3) depicted with a circle and the capital Nuuk depicted with a 
581 diamond. The inset figure in the lower right corner shows Greenland with the study area framed 
582 in a square. The map was created with the R package ‘RgoogleMaps’ (Loecher & Ropkins 
583 2015).
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597 Fig. 2: Conceptual figure of the sampling design showing fen transects in the right panel and 
598 shrub transects in the left panel 
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618 Fig. 3: Diversity profiles for species richness, Shannon diversity and Simpson diversity coloured 
619 by habitat. Error bars represent 95 percent confidence intervals 
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635 Fig. 4: Species distribution plot of the best fitted latent variable model showing the mean of the 
636 latent variable with a negative binomial distribution. Ellipses represent 95 percent confidence 
637 intervals around the centroids of each habitat
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649 Fig 5: Plot of the correlations between species due to the environmental responses. Only the 
650 significant correlations, based on the 95% credible intervals excluding zero, are plotted. There 
651 were no significant residual correlations, based on the correlated response model. The 
652 environmental variables included in the model were vegetation height, cover of graminoid and 
653 site. The colour blue shows positive correlation and the colour red shows negative correlation. 
654 The larger the circle, the higher the correlation. 
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667 Supplement figures
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668 Fig S1: Plot of the best fitted latent variable model for plant species showing the mean of the 
669 latent variable in two dimensions with a negative binomial distribution. The different colours 
670 indicate different habitat types
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682

683 Fig S2: Boxplot showing how the variables are distributed among habitats
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