Accumulation of sequence variants in genes of Wnt signaling and focal adhesion pathways in human corneas further explains their involvement in keratoconus

View article
Biochemistry, Biophysics and Molecular Biology

Introduction

Keratoconus (KTCN) is an eye disease characterized by progressive thinning and conical protrusion of the cornea (Karolak & Gajecka, 2017). The structural abnormalities in different layers of corneal tissue result in altered refractive powers and a loss of visual function (Rabinowitz, 1998). The first symptoms of KTCN usually appear during puberty or early in the third decade of life (Rabinowitz, 1998). The management of this condition depends on the disease stage and includes visual correction by contact lenses, corneal collagen cross-linking, or corneal transplant surgery (Sarezky et al., 2017; Vazirani & Basu, 2013). The incidence of KTCN is one in 2,000 individuals in the general population (Rabinowitz, 1998). However, the incidence may vary depending on the geographic location and ethnicity of the studied population. The estimated incidence of KTCN is higher in Indians, Chinese, Pacific, and Maori ethnicities compared with Caucasians (Pearson et al., 2000; Georgiou et al., 2004; Kok, Tan & Loon, 2012; Patel & McGhee, 2013; Gokhale, 2013; Godefrooij et al., 2016). The environmental factors, such as eye rubbing or contact lens wear, influence disease development (Hashemi et al., 2019). However, genetic triggers also play an important role in KTCN (Karolak & Gajecka, 2017; Abu-Amero, Al-Muammar & Kondkar, 2014). Several genomic strategies have been implemented for finding candidate genes, including both simple molecular techniques and high-throughput technologies (Karolak & Gajecka, 2017; Abu-Amero, Al-Muammar & Kondkar, 2014; Bykhovskaya, Margines & Rabinowitz, 2016; Mas Tur et al., 2017; Valgaeren, Koppen & Van Camp, 2018; Loukovitis et al., 2018).

Linkage studies, performed in KTCN families, have led to the identification of multiple chromosomal regions linked to KTCN, including two replicated loci at 5q (Tang et al., 2005; Li et al., 2006; Bisceglia et al., 2009; Rosenfeld et al., 2011; Bykhovskaya et al., 2016). The genome-wide association studies have detected variants mapped near HGF, COL5A1, FOXO1, RAB3GAP1, or ZNF469, associated with KTCN risk (Li et al., 2012; Burdon et al., 2011; Hoehn et al., 2012; Lu et al., 2013). However, their contribution to KTCN needs to be clarified. Several candidate genes for KTCN have also been identified using Sanger sequencing or next-generation sequencing including VSX1, SOD1 and DOCK9 or SKP1, MPDZ, FLG, PPIP5K2, and PCSK1, respectively (Héon et al., 2002; Karolak et al., 2015, 2017; Udar et al., 2006; Lucas et al., 2018; Khaled et al., 2019; Magalhães et al., 2019). However, variants detected in those genes were present in a small fraction of KTCN patients or particular populations only.

Analysis of transcriptome profiles of human KTCN and non-KTCN corneas by a high-throughput RNA sequencing (RNA-Seq) showed the deregulation of numerous genes in KTCN corneas (Kabza et al., 2017). The significant downregulation was observed among genes in collagen synthesis and maturation pathways, as well as in the TGF-β, Hippo and Wnt signaling pathways (Kabza et al., 2017). The results of subsequent RNA studies further support the potential role of genes involved in the extracellular matrix, TGF-β and Wnt molecular cascades in KTCN pathogenesis (Khaled et al., 2018; You et al., 2018; Sharif et al., 2019). Since these signaling pathways influence the corneal organization and play a role in the regulation of extracellular matrix components, the genes encoding the core elements of the mentioned pathways were proposed as novel candidate genes for KTCN.

To assess the involvement of new genetic variants in KTCN etiology, we performed a further molecular investigation of corneas of Polish patients with KTCN, previously tested by RNA-Seq, using exome sequencing (ES) approach.

Materials and Methods

Patients

All patients with KTCN underwent a complete ophthalmic evaluation in the Department of Ophthalmology, Medical University of Warsaw, Poland. The KTCN diagnosis was made based on the criteria previously described (Kabza et al., 2017; Karolak et al., 2016). The study protocol was approved by the Institutional Review Board at Poznan University of Medical Sciences (453/14; 755/19). All individuals provided informed consent after the possible consequences of the study were explained, in accordance with the Declaration of Helsinki.

Material collection and DNA extraction

The pairs of whole corneal tissues and blood samples were obtained from previously evaluated five KTCN patients (KC15, KC16, KC17, KC18, and KC19) (Kabza et al., 2017) undergoing a penetrating keratoplasty procedure. The clinical characteristics of these patients are presented in Table S1. Genomic DNA samples from the corneas were extracted using the Cells and Tissue DNA Isolation Kit (Norgen Biotek, Thorold, ON, Canada) according to the manufacturer’s protocol. Genomic DNA samples were isolated from the blood lymphocytes using the Gentra Puregene Blood Kit (Qiagen, Hilden, Germany), as previously described (Karolak et al., 2016).

Exome sequencing

This pilot ES study was conducted with 50 ng of genomic DNA of whole corneal tissues (KC15, KC16, KC17, KC18, and KC19) using the SureSelectQXT Reagent Kit combined with the SureSelectXT Human All Exon V5 (Agilent Technologies, Cedar Creek, TX, USA) according to manufacturer’s instruction. Prepared libraries were paired-end sequenced (2 × 100 bp) on an Illumina HiSeq1500 (Illumina, San Diego, CA, USA). For each cornea sample > 80 million read pairs were generated resulted in >100× of mean coverage. Sequence readouts were initially analyzed with bcl2fastq software to generate reads in fastq format. These reads were mapped against a human genome reference sequence (GRCh37) using the Burrows–Wheeler Alignment (BWA), which was followed by BAM post-processing and variant calling using HaplotypeCaller and the GATK suite (McKenna et al., 2010). Finally, ANNOVAR (Wang, Li & Hakonarson, 2010) was used to annotate relevant information about gene names, predicted variant pathogenicity, reference allele frequencies and metadata from external resources and then to add these to the variant call format (VCF) file.

Variants selection

Sequence variants identified in KTCN corneas were filtered in a step-wise manner to exclude synonymous variants and variants with minor allele frequency (MAF) greater than 0.01 in our internal exome database (DMG) consisting of 3,000 Polish individuals, ExAC Browser (http://exac.broadinstitute.org/), GnomAD database (https://gnomad.broadinstitute.org/), and the 1,000 Genomes Project (http://www.1000genomes.org). Moreover, variants predicted as neutral by MutationTaster (Schwarz et al., 2010), PolyPhen-2 (Adzhubei, Jordan & Sunyaev, 2013), LRT (Chun & Fay, 2009) and SIFT (Kumar, Henikoff & Ng, 2009) tools were filtered out. The additional exclusion criterion was negative conservation scores in PhyloP (Pollard et al., 2010) analysis.

Sanger sequencing

To confirm variants detected by ES in five KTCN corneas, Sanger sequencing of DNA in matching blood samples was performed. Briefly, fragments of genes containing particular variants were amplified using Taq DNA Polymerase (Thermo Scientific, San Jose, CA, USA). Following purifications with the use of FastAP Thermosensitive Alkaline Phosphatase and Exonuclease I (Thermo Scientific, San Jose, CA, USA), the amplicons were sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Inc., Foster City, CA, USA). Samples were analyzed on the ABI Prism 3730xl genetic analyzer (Applied Biosystems Inc., Foster City, CA, USA). Sequences were assembled using Sequencher 5.0. Software (GeneCodes Corporation, Ann Arbor, MI, USA).

Pathway overrepresentation analysis

The overrepresentation analysis of molecular pathways among genes with identified sequence variants, which met the filtering criteria, was performed using the ConsensusPathDB tool (Kamburov et al., 2013). Only pathways with p-value ≤ 0.01 and sharing at least two genes with our gene set were analyzed.

Ethnically-matched control datasets

For comparison purposes, the datasets comprising ES data of five randomly selected Polish individuals without ocular abnormalities and five Polish patients with high myopia (HM) were used. Variants from control ES data were selected using the same filtering criteria as we used for the KTCN study, followed by enrichment analyses.

Expression analysis

Expression levels of selected genes from overrepresented pathways, given in the gene-level transcripts per million (TPM), were obtained from the RNA-Seq study, which has been previously performed in the same corneal material (Kabza et al., 2017). The expression values of the particular genes were compared between corneal samples in which variant(s) was identified and in samples without the analyzed variant.

Results

This pilot ES screening of KTCN corneas revealed 117 potentially relevant variants with MAF ≤ 0.01 in our internal DMG cohort and public databases and fulfilling all of the remaining filtering criteria (Table S2). Genes with identified rare nucleotide variants were enriched in 14 molecular pathways, including Wnt signaling (VANGL1, WNT1, PPP3CC, LRP6, FZD2) and focal adhesion (BIRC2, PAK6, COL4A4, PPP1R12A, PTK6) pathways (Table 1). The analysis of functional interactions between genes from overrepresented molecular pathways allowed for further narrowing the number of candidate KTCN variants (Table 2).

Table 1:
Top pathways overrepresented across the genes with identified sequence variants in KTCN corneas detected by ConsensusPathDB server (p-value cutoff 0.01).
Pathway name Source Genesa p-Value
Disassembly of the destruction complex and recruitment of AXIN to the membrane Reactome FZD2, LRP6, WNT1 0.000873181
Wnt signaling Wikipathways VANGL1, WNT1, PPP3CC, LRP6, FZD2 0.000893629
Type I hemidesmosome assembly Reactome PLEC, COL17A1 0.001477943
Wnt signaling in kidney disease Wikipathways WNT1, LRP6, FZD2 0.001788119
Wnt signaling pathway - Homo sapiens (human) KEGG VANGL1, WNT1, PPP3CC, LRP6, FZD2 0.002830193
RAB GEFs exchange GTP for GDP on RABs Reactome ANKRD27, DENND1A, RABGEF1, DENND4C 0.002959219
The activation of arylsulfatases Reactome ARSD, ARSB 0.003148218
Epithelial to mesenchymal transition in colorectal cancer Wikipathways WNT1, COL4A4, LRP6, FZD2, MEF2D 0.003952926
cGMP-PKG signaling pathway - Homo sapiens (human) KEGG ATP2A1, PIK3CG, PPP1R12A, PPP3CC, MEF2D 0.004277236
MicroRNAs in cardiomyocyte hypertrophy Wikipathways HDAC9, FZD2, LRP6, PIK3CG 0.004456905
Wnt-beta-catenin signaling pathway in Leukemia Wikipathways WNT1, LRP6 0.008974682
Rab regulation of trafficking Reactome ANKRD27, DENND1A, RABGEF1, DENND4C 0.009329868
Focal adhesion Wikipathways BIRC2, PAK6, COL4A4, PPP1R12A, PTK6 0.009582658
Regulation of RAS by GAPs Reactome NF1, SPRED2 0.009787951
DOI: 10.7717/peerj.8982/table-1

Note:

Analyzes were performed in genes with variants fulfilling the filtering criteria: (i) MAF ≤ 0.01 in our internal database, the ExAC Browser, GnomAD database and the 1,000 Genomes Project Variants; (ii) positive conservation scores in PhyloP; (iii) pathogenic/damaging in MutationTaster, PolyPhen2, LRT and SIFT tools.
Table 2:
The list of nonsynonymous sequence variants in genes from Wnt signaling and focal adhesion pathways, identified in KTCN corneas in ES.
Identifier Gene Acession number Positiona cDNA Protein DMGb GnomADc Rs_idd
KC15 WNT1 NM_005430.3 chr12:49375373G>T c.1063G>T p.(V355F) 0 NAe rs387907358
PTK6 NM_005975.3 chr20:62161533G>T c.1066C>A p.(P356T) 0 NA NA
KC16 FZD2 NM_001466.3 chr17:42636294G>A c.1238G>A p.(R413Q) 0 0.00002396 rs758351214
VANGL1 NM_001172411.1 chr1:116194075C>T c.41C>T p.(S14L) 0 NA NA
COL4A4 NM_000092.4 chr2:227924157C>T c.2347G>A p.(G783R) 0.000333 NA rs1202230056
KC17 LRP6 NM_002336.2 chr12:12274080G>A c.4822C>T p.(P1608S) 0 NA NA
PPP3CC NM_001243975.1 chr8:22389795T>C c.1199T>C p.(M400T) 0 NA NA
KC18 BIRC2 NM_001166.4 chr11:102248388A>G c.1528A>G p.(I510V) 0.001 0.00002148 rs749829698
KC19 PPP1R12A NM_001244992.1 chr12:80266702T>C c.254A>G p.(N85S) 0.000667 0.00002422 rs370959842
PAK6 NM_001276717.1 chr15:40566454C>A c.1855C>A p.(P619T) 0 NA NA
DOI: 10.7717/peerj.8982/table-2

Notes:

Human Genome Browser—hg19 assembly (GRCh37).
Minor allele frequency based on internal control exome database covering of 3,000 Polish individuals; Department of Medical Genetics (DMG), Medical University of Warsaw, Warsaw, Poland.
Minor allele frequency based on GnomAD database v2.1.2.
NCBI dbSNP Build 151.
Not available.

Sanger sequencing performed in blood samples derived from the five studied individuals confirmed all variants identified with the use of ES in matched corneas.

The overrepresentation analysis performed among genes filtered in a step-wise manner in control datasets revealed an enrichment in 16 (i.e., O-linked glycosylation, C-type lectin receptors, termination of O-glycan biosynthesis, nucleotide-binding oligomerization domain) and nine (i.e., cargo recognition for clathrin-mediated endocytosis VLDL clearance, glyoxylate and dicarboxylate metabolism, statin pathway DNA damage recognition in GG-NER) pathways in HM patients and individuals without ocular disease, respectively. No genes involved in pathways enriched in KTCN corneas were overrepresented in our control sample sets containing randomly selected Polish individuals without ocular abnormalities (n = 5) and Polish patients with HM (n = 5).

The TPM values of genes from overrepresented pathways in corneas of patients carrying particular gene variants and in KTCN individuals without the analyzed gene variation were calculated based on our previous RNA-Seq study data (Kabza et al., 2017). The expression values of the genes varied between patients with particular variants and the mean expression values of the same genes in the KTCN individuals without these variants. The expression profile of genes from overrepresented pathways in KTCN corneas is presented in Table 3.

Table 3:
The expression of genes with rare variants identified in ES analysis.
Pathway Gene symbol/
variant
KC_15 KC_16 KC_17 KC_18 KC_19 Mean
expression
Wnt Signaling WNT1
c.1063G>T
0.051 0.000 0.000 0.018 0.023 0.0103
Focal Adhesion PTK6
c.1066C>A
27.705 31.413 22.991 25.809 26.031 26.5610
Wnt Signaling FZD2
c.1238G>A
1.254 0.151 2.988 0.453 0.544 1.3098
Wnt Signaling VANGL1
c.41C>T
4.655 3.581 4.129 3.132 5.074 4.2475
Focal Adhesion COL4A4
c.2347G>A
8.802 8.487 15.100 5.863 7.398 9.2908
Wnt Signaling LRP6
c.4822C>T
14.144 13.303 11.900 11.515 12.581 12.8858
Wnt Signaling PPP3CC
c.1199T>C
12.523 14.479 9.580 8.556 10.525 11.5208
Focal Adhesion BIRC2
c.1528A>G
42.675 45.517 32.853 30.261 40.725 40.4425
Focal Adhesion PPP1R12A
c.254A>G
83.939 83.438 61.009 55.103 76.460 70.8723
Focal Adhesion PAK6
c.1855C>A
8.818 7.144 5.704 4.970 6.011 6.6590
DOI: 10.7717/peerj.8982/table-3

Note:

Grey color indicates the expression level in samples in which variant was present, and white color indicates the expression level of genes in samples without the presence of the analyzed variant.

The data were deposited in the freely accessible ClinVar database (submission ID: SUB3758236 and SUB4926771).

Discussion

The rapid development of next-generation DNA sequencing methods has greatly improved the ability to detect genetic variations (Koboldt et al., 2013). However, KTCN, like many other ophthalmic diseases, displays genetic heterogeneity hindering the identification of a factor unambiguously influencing its development (Karolak & Gajecka, 2017; Stone et al., 2004).

The results of this pilot ES study of corneas obtained from five KTCN patients undergoing penetrating keratoplasty revealed various rare possibly pathogenic variants in genes that were overrepresented in several molecular pathways, including the Wnt signaling and focal adhesion. Interestingly, these pathways have been proposed as involved in KTCN etiology based on our previous RNA-Seq study, performed in experimental material derived from the same KTCN patients, as well as other experiments (Kabza et al., 2017; Khaled et al., 2018; You et al., 2018; Sharif et al., 2019). In addition, each of five patients had at least one variant in genes from these particular pathways. Among genes from overrepresentation gene sets were LRP6, FZD2, COL4A4, and WNT1.

Ocular cells, including corneal epithelial stem cells, express components of the Wnt/β-catenin signaling pathway during eye development (Nakatsu et al., 2011). The LRP6 gene encodes the low-density lipoprotein receptor-related protein, which is a component of a Wnt receptor complex. This complex is involved in Wnt ligands binding resulting in the nuclear translocation of β-catenin and regulation of the transcription of target genes (Zhang et al., 2015). Knock-out of β-catenin or its both co-receptors (Lrp5 and Lrp6) in mouse corneal stromal cells resulted in premature stratification of the corneal epithelium, suggesting these genes play a role in the regulation of corneal morphogenesis (Zhang et al., 2015). In this study, the expression of LRP6 in the cornea of the carrier of variant c.4822C>T (KC17) was unchanged compared to the other four KTCN individuals. However, since this variant was identified in KC17 patient in combination with another variant in the gene of Wnt signaling pathway (PPP3CC), we suggest that this variant might be a part of the specific combination of KTCN variants and its identification is not incidental.

The FZD2 gene encodes frizzled class receptor 2, another protein functioning as Wnt ligands receptor and regulating the eye development through Wnt/β-catenin signaling. Xenopus frizzled-2, a homolog of the human frizzled receptor, is highly expressed in the embryo, including the developing eye (Deardorff & Klein, 1999). Interestingly, a significant increase of mRNA and protein expression of secreted frizzled-related protein 1 (SFRP1), which is a Wnt antagonist, has been detected in KTCN corneal epithelium and corneal buttons (Sutton et al., 2010; You et al., 2013a). In contrast, tear SFRP1 level has been significantly decreased in KTCN patients compared to control individuals (You et al., 2013b). The c.1238G>A variant in FZD2 was identified in the cornea of KC16 patient in combination with c.41C>T variant in VANGL1 (Wnt signaling) and c.2347G>A variant in COL4A4 (focal adhesion). It is known that collagens are major components of human corneas and the thinning of corneal stroma in KTCN may be the final effect of a disorganized collagen lamellae arrangement (Meek et al., 2005; Mathew et al., 2015). The COL4A4 gene is expressed in human cornea (Kabza et al., 2017) and based on several studies it has been reported as a candidate gene for KTCN (Stabuc-Silih et al., 2009; Wang et al., 2013; Kokolakis et al., 2014; Saravani et al., 2015). However, genetic analyses of this gene in different populations have given ambiguous results about the role of COL4A4 in KTCN development (Stabuc-Silih et al., 2009; Wang et al., 2013; Kokolakis et al., 2014; Saravani et al., 2015). While there was no difference in expression of COL4A4 and VANGL1 in the patient’s cornea, the expression value of FZD2 in the patient KC16 was lower compared to the expression observed in the other four KTCN individuals. However, further research should be performed to interpret the obtained data.

The combination of variants in WNT1 and PTK6 was revealed in the patient KC15. PTK6 encodes tyrosine kinase 6 protein, which is involved in focal adhesion, as well as in GTPases and MAP kinases regulation. Signaling by PTK6 is implicated in controlling the differentiation of normal epithelium and tumor growth (Brauer & Tyner, 2010). However, there is no report about the role of PTK6 in the maintenance of corneal epithelium.

Also, in KC18 and KC19 patients, variants in other elements (BIRC2 and PAK6 with PPP1R12A, respectively) of Wnt signaling and/or focal adhesion pathways were observed. These results further suggest that the alteration of genes regulating these signaling pathways might be an important risk factor for KTCN.

To determine the likelihood of seeing the overrepresentation of genes from Wnt signaling and focal adhesion in KTCN samples by chance, we performed analyses of exome data of five randomly selected Polish individuals without eye disease, as well as five Polish individuals with HM. Variants from control ES data were selected using the same filtering criteria as we used for the KTCN study, followed by enrichment analyses. No genes involved in Wnt signaling or focal adhesion pathways were overrepresented in our control sample sets, confirming that enrichment of variants in genes from these pathways in KTCN individuals was not incidental.

The small sample size disabled a reliable statistical analysis and due to this limitation, the general conclusions could not be made. However, the results of this pilot study gave additional insight into the role of the Wnt signaling and/or focal adhesion pathways in KTCN development and showed the possible indications for further KTCN research. The identification of rare variants in different genes further supports the heterogeneity of KTCN with multiple genes underlying its pathogenesis (Karolak & Gajecka, 2017; Abu-Amero, Al-Muammar & Kondkar, 2014; Bykhovskaya, Margines & Rabinowitz, 2016; Mas Tur et al., 2017; Valgaeren, Koppen & Van Camp, 2018).

Conclusions

Summarizing, this first pilot ES profiling of human KTCN corneas indicates that the accumulation of variants in several genes from Wnt signaling and/or focal adhesion pathways might cause the phenotypic effect and further explain the involvement of these pathways in KTCN. Moreover, it also supports the hypothesis about the complex basis of KTCN. Since five patients were evaluated, the role of variants in genes of these overrepresented pathways in KTCN etiology should be further elucidated in a larger group of patients using high throughput methods.

Supplemental Information

The clinical characteristics of examined individuals.

aPK—penetrating keratoplasty bOD—Right eye cOS—Left eye

DOI: 10.7717/peerj.8982/supp-1

The list of variants identified in KTCN individulas.

The list of variants fulfilling the filtering criteria

DOI: 10.7717/peerj.8982/supp-2
13 Citations   Views   Downloads