
BinBench: A Benchmark for Binary
Functions Representation

Summary

This paper describes a multi-task benchmark for evaluating the performance of machine
learning models that work with binary code. This benchmark comprises a dataset and 5
tasks that perform different syntactic and semantic analyses.

As the authors suggest, in the existing literature, most of the papers use their custom
datasets and frequently acknowledge problems by trying to compare their solutions. It is
reasonable to expect that the adoption of commonly accepted benchmarks will facilitate
the comparison between models.

I would like to encourage the authors to continue working on this interesting and
valuable problem. It is also my opinion that this type of benchmark will be very useful
for the reverse engineering community. However, this paper needs a major revision to
deal with the concerns mentioned below.

Major comments

1. In the “Signature Recovery” task, to obtain the types of the function parameters,
the authors propose to use a decompiler. My concern here is that the types must
be collected directly from the C source code and not using a decompile. As you
can see in Figure 8 of Escalada et al (2021), the accuracy of decompilers is far
from perfect. So, by obtaining the type information using decompilers, the
authors introduce a big source of systematic error. To get the original type of the
function parameters, there are 2 options:

a. In this paper, all the programs are compiled to generate ELF binaries
with debugging information. The authors can obtain the type of the
parameters traversing the DWARF-related sections
(https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf).
This is the option used by Chua et al (2017): “The function boundaries,
argument counts and types are obtained by parsing the DWARF entries
from the binary. Our implementation uses the pyelftools which parses the
DWARF information [2]; additionally, to extract the argument counts
and types, we implemented a Python module with 179 lines of code.”.

b. The other option is to traverse the source-code ASTs taking care of the
includes and the typedefs. In Escalada et al (2017) you can see an
example of AST traversing using Clang.

2. In the “Compiler Provenance” task, this paper mentions several publications that

detect the compiler and/or the optimization level used to generate a binary using
different parts of a binary:

o Rosenblum et al (2010 and 2011) use the gaps between functions, as
“these gaps may contain data such as jump tables, string constants,
regular padding instructions and arbitrary bytes. While the content of
those gaps sometimes depends on the functionality of the program, they
sometimes denote compiler characteristics”.

o Rahimian et al (2015) use:
§ The Compiler Transformation Profile: this can be inferred from

the assembly instructions.
§ Strings and constants from the DATA section of the binaries.
§ Literal values in the headers
§ The set of additional functions included by the compiler and not

present in the high-level source-code.
o Chen et al (2019) and Massarelli et al (2019a) use only the binary code

of the functions.
My concern here is that the proposed dataset does not store information that
some authors have proved to be valuable to achieve this task. In my opinion, the
machine learning models can improve their performance in this task if they have
access to these other parts of the binary.

3. In the “Signature Recovery” task, I would like to see a discussion on the subset

of types used: pointer, enum, struct, char, int, float, union and void. I suppose
that the authors used the same criteria as Chua et al (2017). However, He et al
(2018) use another subset: struct, union, enum, array, pointer, void, bool, char,
short, int, long and long long. If any specific type is not included in the subset
for any specific reason, it should be motivated.

4. Also, in the “Signature Recovery” task, I have not seen an explanation of the
absence of the return type in the signature of a function. Using the example in
line 294, the type of a function that sums to integers (and returns another one) is
not int x int (or {int, int}) but int x int -> int (or {int,
int, int}). The return type is part of the definition of the function type. In
fact, in the definition of the dataset, there is a “return_type” field, but it is not
used or mentioned any further in the paper. The problem of inferring the return
type of a function is discussed in Escalada et al (2021).

5. Regarding the usefulness and widespread adoption of this benchmark as a
community standard I have 2 main comments:

a. The proposed dataset is created using only 2 compilers: GCC and Clang.
The statistics (https://gs.statcounter.com/os-market-share) show that the
market share of OSs that use non-ELF binaries is relevant (and even
more relevant in the desktop-only market, https://gs.statcounter.com/os-
market-share/desktop/worldwide). This is particularly important for the
“Compiler Provenance” task. Therefore, I would like to suggest using at
least the Microsoft C/C++ compiler to generate PE binary files like in
Rossenblum et al (2010 and 2011) and Rahimian et al (2015).

b. For the same reason, compiling only Linux programs for an x86-64 CPU
seems a bit limited. Liu et al (2018) use x86, Massarelli et al (2019b) use
x86-64 and ARM binaries. To collect a big corpus of binaries that run on
several OSs and CPUs, the authors might use C code generators, such as
Cnerator (https://doi.org/10.1016/j.softx.2021.100711).

6. Related to the “Function Search” task, it could be explained in a clearer way,

perhaps with a motivating example to help the reader to understand this task.
Namely:

a. It is not clear to me why the nDCG score is needed. If a solution of size
K is returned with some functions which are truly similar (TPs) and
some errors (FPs). Why it is so important to have all the TPs at the
“beginning” of the set? The user of this solution is not going to know
which ones are TPs or FPs.

b. What do you use as the “Similar” function? Any kind of distance
function? I have not found a field in the dataset grouping the functions in
clusters based on their similarity.

c. A deeper explanation in the “Function Search Baseline” section would
be also advisable.

7. Concerning the Related work:
a. I have noticed the lack of literature related to the “Function Search” task.
b. I would also like to reference some publications that undertake

decompilation “as a whole” using a Neural Machine Translation
approach: Katz (Deborah) et al, Katz (Omer) et al and Fu et al. They
achieve some of the proposed tasks in order to generate the decompiled
code.

c. I would also include the papers already mentioned in other parts of this
review:

i. Escalada et al (2021)
ii. Cnerator

iii. Escalada et al (2017)

8. Finally, I would like to suggest a task, called “Identify Function Entry Points”
(or FEPs) in a stripped binary. I quote Rosemblum et al (2008) to remark on the
importance of this task:

a. “The very first step in binary code analysis is to precisely locate all the
function entry points (FEPs), which in turn lead to all code bytes. When
full symbol or debug information is available this is a trivial step,
because the FEPs are explicitly listed. However, malicious programs,
commercial software, operating system distributions, and legacy codes
all commonly lack symbol information.”

b. “Identifying FEPs within gaps in stripped binaries is of ultimate
importance to binary code analysis …”

The following publications are related to this task:
1. Rosemblum et al (2008)
2. Bao et al (2014)
3. Shin et al (2015)
4. Escalada et al (2017) in Section 3.6

In my opinion, a model that works with binary code and is not able to identify
the beginning of the FEPs will struggle to make any function-related task.

Minor comments

1. In lines 347 to 349, it is said: “Furthermore, we have removed duplicate
functions of the blind dataset. Two functions are duplicated if they contains the
same sequence of instructions without considering memory offsets and
immediate values.”. With this approach the models cannot be evaluated in the
“Function Naming” task with functions that differ only in the literals, like:

a. bool isNewLine(char c) { return c == ‘\n’;}
b. bool isSpace(char c) { return c == ‘ ’;}

or:
c. bool isUpper(char c) { return c >= ‘A’ && c <= ‘Z’;}
d. bool isLower(char c) { return c >= ‘a’ && c <= ‘z’;}

2. In the “Function Name” metrics it is said: ”In detail, each function name is

represented as a list of tokens (which are the labels to be predicted). This is
obtained by splitting each function name on underscores. For example, the
function name set value is splitted as [”set ”, ”value”].”. The problem that I see
with this approach is that there are several conventions that can be used:

a. setvalue
b. set_value
c. SETVALUE
d. SET_VALUE
e. SetValue
f. setValue
g. Even strange ones like _sEt_VaLuE_

so, the authors cannot suppose that one is the standard.

3. In lines 310 to 311, it appears “[We discard a package]… when the binaries
produced by different optimization levels are equal; this last case is to avoid the
introduction of duplicated functions in the dataset.”. It is unclear to me why this
is necessary or even why it is undesirable to have several binaries with the same
binary representation even though they were produced with different
optimization levels.

4. In the “Compiler Provenance” definition appears a reference to Lafferty et al

(2001) as a paper that has studied compiler provenance. This paper is the
seminal work on Conditional Random Fields, so it is not appropriate to put it
there.

5. In line 249, both references to Rosenblum et al must be exchanged.

6. Considering the following sentences as an example:

a. (Abstract) Line 14: “… first and foremost, the one of making …”
b. (Abstract) Lines 15 to 16: “… is the one of being able to …”
c. (Introduction) Line 75: “… this initiative could foster …”
d. (Benchmarks) Line 107: “… is the one of using …”

I would suggest eliminating unnecessary phrases and redundancies to make the
text clearer and more concise.

7. I have seen some sentences that, in my opinion, should be rewritten to eliminate
some subjective and non-quantitative adjectives. In case any of them are
necessary there must be followed by an explanation and/or a cite that support
them. Some examples are:

a. (Introduction) Line 25: “… overarching …”
b. (Introduction) Line 33: “Unsurprisingly, …”
c. (Introduction) Lines 50 to 51: “… is a crucial aspect that has been

mainly neglected …”.
1. Why is crucial?
2. Why has been neglected?

d. (Introduction) Line 65: “However, a worthwhile effort is the one of, …”
e. (Signature Recovery) Line 158: “Considerably less attention …”
f. (Compiler Provenance) Line 164: “… has been extensively studied.”
g. (EvalAI) Line 369: “… the well-known …”
h. (Introduction) Lines 24 to 25: “This is due to their unmatched ability to

solve complex problems using a purely data driven approach.”
i. Who says this is unmatched?

8. In the Contribution, lines 81 to 82: “This design choice has been made so that

researchers proficient in neural networks, but not in binary analysis can use the
dataset…”. I cannot see how it is possible to validate/interpret the outputs
obtained by one of these models without a basic understanding of binary
analysis. I would rethink this assertion.

9. In “Data Source”, line 308 “During compilation we keep debug symbols (-g)…”

I would add a comment explaining that those OBJs should not be used directly
as model inputs. These binaries contain the debugging information in the
DWARF-related sections and the models could use it. This is particularly
important if the user of this dataset is not proficient in binary analysis. Another
alternative could be to provide the stripped version of the OBJs, instead.

10. In line 70: “… e.g. understanding which compiler has generated …” I would

replace “understanding” for “identifying”.

11. Lines 94 and 354. In the references to EvalAI, I would add a sentence
referencing the dedicated section.

12. Line 413. I would add a description and a link to the “restricted compiler
dataset” in the Massarelli et al paper:
https://drive.google.com/file/d/15VUJ3iwj5VHCqAXiUcr4zJgVWSCbaU_d/view?
usp=sharing

13. The text would better be reviewed by a native proofreader to eliminate some
typos and minor grammar mistakes.

References
• Escalada et al (2021): https://arxiv.org/abs/2101.08116
• Cnerator: https://doi.org/10.1016/j.softx.2021.100711
• Escalada et al (2017): https://doi.org/10.1155/2017/3273891

• Katz (Deborah) et al: https://doi.org/10.1109/SANER.2018.8330222
• Katz (Omer) et al: https://doi.org/10.48550/arXiv.1905.08325
• Fu et al:

https://papers.nips.cc/paper/2019/hash/093b60fd0557804c8ba0cbf1453da22f-
Abstract.html

• Rosemblum et al (2008): https://dl.acm.org/doi/10.5555/1620163.1620196
• Bao et al (2014): https://www.usenix.org/conference/usenixsecurity14/technical-

sessions/presentation/bao
• Shin et al (2015):

https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/shin

