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ABSTRACT12

Regression analysis makes up a large part of supervised machine learning, and consists in of the
prediction of a continuous independent target from a set of other predictor variables. The difference
between binary classification and regression is in the target range: in binary classification, the target can
have only two values (usually encoded as 0 and 1), while in regression the target can have multiple values.
Even if regression is analysis has been employed in a huge number of machine learning studies, no
consensus has been reached on a single, unified, standard metric to assess the results of the regression
itself. Many studies employ the mean square error (MSE) and its rooted variant (RMSE), or the mean
absolute error (MAE) and its percentage variant (MAPE). Although useful, these rates share a common
drawback: since their values can range between zero and +infinity, a single value of them does not say
much about the performance of the regression with respect to the distribution of the ground truth elements.
In this study, we focus on two rates that actually generate a high score only if the majority of the elements
of a ground truth group has been correctly predicted: the coefficient of determination (R-squared) and
the symmetric mean absolute percentage error (SMAPE). After showing their mathematical properties,
we report a comparison between R2 and SMAPE in several use cases and in a two real medical scenario
scenarios. Our results demonstrate that the coefficient of determination (R-squared) is more informative
and truthful than SMAPE, and does not have the interpretability limitations of MSE, RMSE, MAE, and
MAPE. We therefore suggest the usage of R-squared as standard metric to evaluate regression analyses
in any scientific domain.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 INTRODUCTION31

The role played by regression analysis in data science cannot be overemphasised: predicting a continuous32

target is a pervasive task not only in practical terms, but also at a conceptual level. Regression is deeply33

investigated even nowadays, to the point of still being worth of considerations in top journals (Jaqaman34

and Danuser, 2006; Altman and Krzywinski, 2015; Krzywinski and Altman, 2015), and being widespread35

used also in the current scientific war against COVID-19 (Chan et al., 2021; Raji and Lakshmi, 2020;36

Senapati et al., 2020; Gambhir et al., 2020). The theoretical basis of regression encompasses several37

aspects revealing hidden connections in the data and alternative perspectives even up to broadly speculative38

view: for instance, interpreting the whole statistical learning as a particular kind of regression (Berk,39

2020), or framing deep neural networks as recursive generalised regressors (Wüthrich, 2020), or even40

provocatively pushing such considerations to the limit of setting the whole of statistics under the regression41

framework (Hannay, 2020). The relevancy of the topic clearly reflects on the wide is clearly reflected42

in the wide and heterogeneous literature covering the different aspects and insights of the regression43

analysis, from general overviews (Golberg and Cho, 2004; Freund et al., 2006; Montgomery et al., 2021),44



to more technical studies (Sykes, 1993; Lane, 2002) or articles outlining practical applications (Draper45

and Smith, 1998; Rawlings et al., 2001; Chatterjee and Hadi, 2015), including handbooks (Chatterjee46

and Simonoff, 2013) or works covering specific key subtopics (Seber and Lee, 2012). However, the47

reference landscape is far wider: the aforementioned considerations stimulated a steady flow of studies48

investigating more philosophically oriented arguments (Allen, 2004; Berk, 2004), or deeper analysis of49

implications related to learning (Bartlett et al., 2020). Given the aforementioned overall considerations,50

it comes as no surprise that, similarly to what happens happened for binary classification, a plethora of51

performance metrics have been defined and are currently in use for evaluating the goodness quality of a52

regression model (Shcherbakov et al., 2013; Hyndman and Koehler, 2006; Botchkarev, 2018b,a, 2019).53

The parallel with classification goes even further: in the scientific community, a shared consensus on a54

preferential metric is indeed far from being reached, concurring to making comparison of methods and55

results a daunting task.56

The present study provides a contribute towards the detection of critical factors in the choice of a57

suitable performance metric in regression analysis, through a comparative overview of two measures58

of current widespread use, namely the coefficient of determination and the symmetric mean absolute59

percentage error.60

Indeed, despite the lack of a concerted standard, a set of well established and preferred metrics does61

exist and we believe that, as primus inter pares, the coefficient of determination R-squared deserves a62

major role. Introduced by Sewell Wright (1921) and generally indicated by R2, in its original formulation63

should quantify quantifies how much the dependent variable is determined by the independent variables,64

in terms of proportion of variance. Again, given the age and diffusion of R2, a wealth of studies about65

it has populated the scientific literature of the last century, from general references detailing definition66

and characteristics (Di Bucchianico, 2008; Barrett, 2000; Brown, 2009; Barrett, 1974), to more refined67

interpretative works (Saunders et al., 2012; Hahn, 1973; Nagelkerke, 1991; Ozer, 1985; Cornell and68

Berger, 1987; Quinino et al., 2013); efforts have been dedicated to the treatment of particular cases (Allen,69

1997; Blomquist, 1980; Piepho, 2019; Srivastava et al., 1995; Dougherty et al., 2000; Cox and Wermuth,70

1992; Zhang, 2017; Nakagawa et al., 2017; Menard, 2000) and to the proposal of ad-hoc variations (Young,71

2000; Renaud and Victoria-Feser, 2010; Lee et al., 2012).72

Parallel to the model explanation expressed as the variance, another widely adopted family of measures73

evaluate the goodness quality of fit in terms of distance of the regressor to the actual training points. The74

two basic members of such family are the mean average error (MAE) (Sammut and Webb, 2010a) and the75

mean squared error (MSE) (Sammut and Webb, 2010b), whose difference lies in the evaluating metric,76

respectively linear L1 or quadratic L2. Once more, the available references are numerous, related to both77

theoretical (David and Sukhatme, 1974; Rao, 1980; So et al., 2013) and applicative aspects (Allen, 1971;78

Farebrother, 1976; Gilroy et al., 1990; Imbens et al., 2005; Köksoy, 2006; Sarbishei and Radecka, 2011).79

As a natural derivation, the square root of mean square error (RMSE) has been widely adopted (Nevitt and80

Hancock, 2000; Hancock and Freeman, 2001; Applegate et al., 2003; Kelley and Lai, 2011) to standardize81

the units of measures of MSE. The different type of regularization imposed by the intrinsic metrics reflects82

on the relative effectiveness of the measure according to the data structure. In particular, as a rule of83

thumb, MSE is more sensitive to outliers than MAE; in addition to this general note, several further84

considerations helping the researchers in choosing the more suitable metric for evaluating a regression85

model given the available data and the target task can be drawn (Chai and Draxler, 2014; Willmott and86

Matsuura, 2005; Wang and Lu, 2018). Within the same family of measures, the mean absolute percentage87

error (MAPE) (de Myttenaere et al., 2016) focuses on the percentage error, being thus the elective metric88

when relative variations have a higher impact on the regression task rather than the absolute values.89

However, MAPE is heavily biased towards low forecasts, making it unsuitable for evaluating tasks where90

large errors are expected (Armstrong and Collopy, 1992; Ren and Glasure, 2009; De Myttenaere et al.,91

2015). Last but not least, the symmetric mean absolute percentage error (SMAPE) (Armstrong, 1985;92

Flores, 1986; Makridakis, 1993) is a recent metric originally proposed to solve some of the issues related93

to MAPE. Despite the yet not reached agreement on its optimal mathematical expression (Makridakis and94

Hibon, 2000; Hyndman and Koehler, 2006; Hyndman, 2014; Chen et al., 2017), SMAPE is progressively95

gaining momentum in the machine learning community due to its interesting properties (Maiseli, 2019;96

Kreinovich et al., 2014; Goodwin and Lawton, 1999),97

An interesting discrimination among the aforementioned metrics can be formulated in terms of their98

output range. The coefficient of determination is upper bounded by the value 1, attained for perfect fit;99
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while R2 is not lower bounded, the value 0 corresponds to (small perturbations of) the trivial fit provided100

by the horizontal line y = K for K the mean of the target value of all the training point points. Since all101

negative values for R2 indicate a worse fit than the average line, nothing is lost by considering the unit102

interval as the meaningful range for R2. As a consequence, the coefficient of determination is invariant103

for linear transformations of the independent variables’ distribution, and an output value close to one104

yields a good prediction regardless of the scale on which such variables are measured (Reeves, 2021).105

Similarly, also SMAPE values are bounded, with the lower bound 0% implying a perfect fit, and the106

upper bound 200% reached when all the predictions and the actual target values are of opposite sign.107

Conversely, MAE, MSE, RMSE and MAPE output spans the whole positive branch of the real line,108

with lower limit zero implying a perfect fit, and values progressively and infinitely growing for worse109

performing models. By definition, these values are heavily dependent on the describing variables’ ranges,110

making them incomparable both mutually and within the same metric: a given output value for a metric111

has no interpretable relation with a similar value for a different measure, and even the same value for112

the same metric can reflect deeply different model performance for two distinct tasks (Reeves, 2021).113

Such property cannot be changed even if projecting the output into a bounded range through a suitable114

transformation (for example, arctangent or rational function). Given these interpretability issues, here we115

concentrate our comparative analysis on R2 and SMAPE, both providing a high score only if the majority116

of the ground truth training points has been correctly predicted by the regressor. Showing the behaviour117

of these two metrics in several use cases and in a two biomedical scenario scenarios on a dataset two118

datasets made of with 615 electronic health records (75 hepatitis C patients and 540 healthy controls)119

described by 13 clinical factors, the coefficient of determination is demonstrated to be superior to SMAPE120

in terms of effectiveness and informativeness, thus being the recommended general performance measure121

to be used in evaluating regression analyses.122

The manuscript organization proceeds as follows. After this Introduction, in the Methods section we123

introduce the cited metrics, with their mathematical definition and their main properties, and we provide124

a deeper more detailed description of for R2 and SMAPE and their extreme values (section 2). In the125

following section Results and Discussion, we present the experimental part (section 3). First, we describe126

five synthetic use cases, then we introduce and detail the Lichtinghagen dataset and the Palechor dataset127

of electronic health records, together with the different applied regression models and the corresponding128

results. We complete that section by with a the discussion of the implication of all the obtained outcomes.129

In the Conclusions section, we draw some final considerations and future developments (section 4).130

2 METHODS131

In this section, we first introduce the mathematical background of the analyzed rates (subsection 2.1), then132

report some relevant information about the coefficient of determination and SMAPE (subsection 2.2).133

2.1 Mathematical background134

In the following formulas, Xi is the predicted ith value, and the Yi element is the actual ith value. The
regression method predicts the Xi element for the corresponding Yi element of the ground truth dataset.
Define two constants: the mean of the true values

Ȳ =
1
m

m

∑
i=1

Yi (1)

and the mean total sum of squares

MST =
1
m

m

∑
i=1

(Yi− Ȳ )2 (2)

Coefficient of determination (R2 or R-squared)

R2 = 1−

m

∑
i=1

(Xi−Yi)
2

m

∑
i=1

(Ȳ −Yi)
2

(3)
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(worst value =−∞; best value =+1)135

136

The coefficient of determination (Wright, 1921) can be interpreted as the proportion of the variance in137

the dependent variable that is predictable from the independent variables.138

Mean square error (MSE)

MSE =
1
m

m

∑
i=1

(Xi−Yi)
2 (4)

(best value = 0; worst value =+∞)139

140

MSE can be used if there are outliers that need to be detected. In fact, MSE is great for attributing141

larger weights to such points, thanks to the L2 norm: clearly, if the model eventually outputs a single very142

bad prediction, the squaring part of the function magnifies the error.143

Since R2 = 1− MSE
MST and since MST is fixed for the data at hand, R2 is monotonically related to MSE144

(a negative monotonic relationship), which implies that an ordering of regression models based on R2 will145

be identical (although in reverse order) to an ordering of models based on MSE or RMSE.146

Root mean square error (RMSE)

RMSE =

√
1
m

m

∑
i=1

(Xi−Yi)2 (5)

(best value = 0; worst value =+∞)147

148

The two quantities MSE and RMSE are monotonically related (through the square root). An ordering149

of regression models based on MSE will be identical to an ordering of models based on RMSE.150

Mean absolute error (MAE)

MAE =
1
m

m

∑
i=1
| Xi−Yi | (6)

(best value = 0; worst value =+∞)151

152

MAE can be used if outliers represent corrupted parts of the data. In fact, MAE is not penalizing too153

much the training outliers (the L1 norm somehow smooths out all the errors on the outlier of possible154

outliers), thus providing a generic and bounded performance measure for the model. On the other hand, if155

the test set also has many outliers too, the model performance will be mediocre.156

Mean absolute percentage error (MAPE)

MAPE =
1
m

m

∑
i=1

∣∣ Yi−Xi

Yi

∣∣ (7)

(best value = 0; worst value =+∞)157

158

MAPE is another performance metric for regression models, having a very intuitive interpretation in159

terms of relative error: due to its definition, its use is recommended in tasks where it is more important160

being sensitive to relative variations than to absolute variations (de Myttenaere et al., 2016). However, its161

has a number of drawbacks, too, the most critical ones being the restriction of its use to strictly positive162

data by definition and being biased towards low forecasts, which makes it unsuitable for predictive models163

where large errors are expected (Armstrong and Collopy, 1992).164
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Symmetric mean absolute percentage error (SMAPE)

SMAPE =
100%

m

m

∑
i=1

| Xi−Yi |
(| Xi |+ | Yi |)/2

(8)

(best value = 0; worst value = 2)165

166

Initially defined by Armstrong (1985), and then refined in its current version by Flores (1986)167

and Makridakis (1993), SMAPE was proposed to amend the drawbacks of the MAPE metric. However,168

there is little consensus on a definitive formula for SMAPE, and different authors keep using slightly169

different versions (Hyndman, 2014). The original SMAPE formula defines the maximum value as 200%,170

which is computationally equivalent to 2. In this manuscript, we are going to use the first value for formal171

passages, and the second value for numeric calculations.172

Informativeness The rates RMSE, MAE, MSE and SMAPE have value 0 if the linear regression model173

fits the data perfectly, and positive value if the fit is less than perfect. Furthermore, the coefficient of174

determination has value 1 if the linear regression model fits the data perfectly (that means if MSE = 0),175

value 0 if MSE = MST, and negative value if the mean squared error, MSE, is greater than mean total sum176

of squares, MST.177

Even without digging into the mathematical properties of the aforementioned statistical rates, it is178

clear that it is difficult to interpret that sole values of MSE, RMSE, MAE, and MAPE, since they have +∞179

as upper bound. An MSE = 0.7, for example, does not say much about the overall quality of a regression180

model: the value could mean both an excellent regression model and a poor regression model. We cannot181

know it unless the maximum MSE value for the regression task is provided or unless the distribution of182

all the ground truth values is known. The same concept is valid for the other rates having +∞ as upper183

bound, such as RMSE, MAE, and MAPE.184

The only two regression scores that have strict real values are the non-negative R-squared and SMAPE.185

R-squared can have negative values, which mean that the regression performed poorly. R-squared can186

have value 0 when the regression model explains none of the variability of the response data around its187

mean (Minitab Blog Editor, 2013).188

The positive values of the coefficient of determination range in the [0,1] interval, with 1 meaning189

perfect prediction. On the other side, the values of SMAPE range in the [0,2], with 0 meaning perfect190

prediction and 2 meaning worst prediction possible.191

This is the main advantage of the coefficient of determination and SMAPE over RMSE, MSE, MAE,192

and MAPE: values like R2 = 0.8 and SMAPE = 0.1, for example, clearly indicate a very good regression193

model performance, despite regardless of the ranges of the ground truth values and their distributions. A194

value of RMSE, MSE, MAE, or MAPE equal to 0.7, instead, fails to inform us about the quality of the195

regression performed.196

This property of R-squared and SMAPE can be useful in particular when one needs to compare197

the predictive performance of a regression on two different datasets having different value scales. For198

example, suppose we have a mental health study describing a predictive model where the outcome is a199

depression scale ranging from 0 to 100, and another study using a different depression scale, ranging from200

0 to 10 (Reeves, 2021). Using R-squared or SMAPE we could compare the predictive performance of the201

two studies without making additional transformations. The same comparison would be impossible with202

RMSE, MSE, MAE, or MAPE.203

Given the superiority better robustness of R-squared and SMAPE over the other four rates, we focus204

the rest of this article on the comparison between them these two statistics.205

2.2 R-squared and SMAPE206

R-squared The coefficient of determination can take values in the range (−∞,1] according to the mutual207

relation between the ground truth and the prediction model. Hereafter we report a brief overview of the208

principal cases.209

R2 ≥ 0: With linear regression with no constraints, R2 is non-negative and corresponds to the square of210

the multiple correlation coefficient.211
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R2 = 0: The fitted line (or hyperplane) is horizontal. With two numerical variables this is the case if
the variables are independent, that is, are uncorrelated. Since R2 = 1− MSE

MST , the relation R2 = 0 is
equivalent to MSE = MST, or, equivalently, to:

m

∑
i=1

(Yi− Ȳ )2 =
m

∑
i=1

(Yi−Xi)
2 (9)

Now, Equation 9 has the obvious solution Xi = Ȳ for 1 ≤ i ≤ m, but, being just one quadratic212

equation with m unknowns Xi, it has infinite solutions, where Xi = Ȳ ±εi for a small εi, as shown in213

the following example:214

• {Yi 1≤ i≤ 10}= {90.317571,40.336481,5.619065,44.529437,71.192687,32.036909,215

6.977097,66.425010,95.971166,5.756337}216

• Ȳ = 45.91618217

• {Xi 1≤ i≤ 10}= {45.02545,43.75556,41.18064,42.09511,44.85773,44.09390,218

41.58419,43.25487,44.27568,49.75250}219

• MSE = MST = 1051.511220

• R2 ≈ 10−8 .221

R2 < 0: This case is only possible with linear regression when either the intercept or the slope are222

constrained so that the ”best-fit” line (given the constraint) fits worse than a horizontal line, for223

instance if the regression line (hyperplane) does not follow the data (CrossValidated, 2011b). With224

nonlinear regression, the R-squared can be negative whenever the best-fit model (given the chosen225

equation, and its constraints, if any) fits the data worse than a horizontal line. Finally, negative R2
226

might also occur when omitting a constant from the equation, that is, forcing the regression line to227

go through the point (0,0).228

A final note. The behavior of the coefficient of determination is rather independent from the linearity of229

the regression fitting model: R2 can be very low even for completely linear model, and vice versa, a high230

R2 can occur even when the model is noticeably non-linear. In particular, a good global R2 can be split in231

several local models with low R2 (CrossValidated, 2011a).232

SMAPE By definition, SMAPE values range between 0% and 200%, where the following holds in the233

two extreme cases:234

SMAPE = 0: The best case occurs when SMAPE vanishes, that is when

100%
m

m

∑
i=1

| Xi−Yi |
(| Xi |+ | Yi |)/2

= 0

equivalent to

m

∑
i=1

| Xi−Yi |
(| Xi |+ | Yi |)/2

= 0

and, since the m components are all positive, equivalent to

| Xi−Yi |
| Xi |+ | Yi |

= 0 ∀ 1≤ i≤ m

and thus Xi = Yi, that is, perfect regression.235

SMAPE = 2: The worst case SMAPE = 200% occurs instead when

100%
m

m

∑
i=1

| Xi−Yi |
(| Xi |+ | Yi |)/2

= 2
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equivalent to
m

∑
i=1

| Xi−Yi |
| Xi |+ | Yi |

= m

By the triangle inequality | a+c |≤| a |+ | c | computed for b=−c, we have that | a−b |≤| a |+ | b |,236

and thus |a−b|
|a|+|b| ≤ 1. This yields that SMAPE = 2 if |Xi−Yi|

|Xi|+|Yi| = 1 for all i = 1, . . . ,m. Thus we reduced237

to compute when ξ (a,b) = |a−b|
|a|+|b| = 1: we analyse now all possible cases, also considering the238

symmetry of the relation with respect to a and b, ξ (a,b) = ξ (b,a).239

If a = 0, ξ (0,b) = |0−b|
|0|+|b| = 1 if b 6= 0.240

Now suppose that a,b > 0: ξ (a,a) = 0, so we can suppose a > b, thus a = b+ ε , with a,b,ε > 0.241

Then ξ (a,b) = ξ (b+ ε,ε) = ε

2b+ε
< 1. Same happens when a,b < 0: thus, if ground truth points242

and the prediction points have the same sign, SMAPE will never reach its maximum value.243

Finally, suppose that a and b have opposite sign, for instance a > 0 and b < 0. Then b =−c, for244

c > 0 and thus ξ (a,b) = ξ (a,−c) = |a+c|
|a|+|c| =

a+c
a+c = 1.245

Summarising, SMAPE reaches its worst value 200% if246

• Xi = 0 and Yi 6= 0 for all i = 1, . . . ,m247

• Xi 6= 0 and Yi = 0 for all i = 1, . . . ,m248

• Xi ·Yi < 0 for all i = 1, . . . ,m, that is, ground truth and prediction always have opposite sign,249

regardless of their values.250

For instance, if the ground truth points are (1, -2, 3, -4, 5, -6, 7, -8, 9, -10),251

any prediction vector with all opposite signs (for example, (-307.18, 636.16, -469.99,252

671.53, -180.55, 838.23, -979.18 , 455.16, -8.32, 366.80)) will result253

in a SMAPE metric reaching 200%.254

Explained the extreme cases of R-squared and SMAPE, in the next section we illustrate some255

significant, informative use cases where these two rates generate discordant outcomes.256

3 RESULTS AND DISCUSSION257

In this section, we first report some particular use cases where we compare the results of R-squared and258

SMAPE (subsection 3.1), and then we describe a real biomedical scenario where the analyzed regression259

rates generate different rankings for the methods involved (subsection 3.2).260

As mentioned earlier, we exclude MAE, MSE, RMSE, and MAPE from the selection of the best261

performing regression rate. These statistics range in the [0,+∞) interval, with 0 meaning perfect regression,262

and their values alone therefore fail to communicate the quality of the regression performance, both on263

good cases and in bad cases. We know for example that a negative coefficient of determination and a264

SMAPE equal to 1.9 clearly correspond to a regression which performed poorly, but we do not have a265

specific value for MAE, MSE, RMSE, and MAPE that indicates this outcome. Moreover, as mentioned266

earlier, each value of MAE, MSE, RMSE, and MAPE communicates the quality of the regression only267

relatively to other regression performances, and not in an absolute manner, like R-squared and SMAPE268

do. For these reasons, we focus on the coefficient of determination and SMAPE for the rest of our study.269

3.1 Use cases270

We list hereafter a number of example use cases where the coefficient of determination and SMAPE
produce divergent outcomes, showing that R2 is more robust and reliable than SMAPE, especially on bad
regressions. To simplify comparison between the two measures, define the complementary normalized
SMAPE as:

cnSMAPE = 1− SMAPE
200%

(10)

(worst value = 0; best value = 1)271

272
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UC1 Use case Consider the ground truth set REAL = {ri = (i, i) ∈ R2, i ∈ N,1≤ i≤ 100} collecting
100 points with positive integer coordinates on the straight line y = x. Define then the set PRED j = {pi}
as

pi =


ri if i 6≡ 1 (mod 5)
r5k+1 for k ≥ j
0 for i = 5k+1 ,0≤ k < j

(11)

so that REAL and PRED j coincides apart from the first j points 1,6,11, . . . congruent to 1 modulo 5 that273

are set to 0. Then, for each 5≤ j ≤ 20, compute R2 and cnSMAPE (Table 1).274

Table 1. UC1 Use case. Values generated through Equation 11. R2: coefficient of
determination (Equation 3). cnSMAPE: complementary normalized
SMAPE (Equation 10).

Both measures decrease with the increasing number of non-matching points p5k+1 = 0, but cnSMAPE275

decreases linearly, while R2 goes down much faster, better showing the growing unreliability of the276

predicted regression. At the end of the process, j = 20 points out of 100 are wrong, but still cnSMAPE is277

as high as 0.80, while R2 is 0.236, correctly declaring PRED20 a very weak prediction set.278

UC2 Use case In a second example, consider again the same REAL dataset and define the three
predicting sets

PREDstart = {ps
i : 1≤ i≤ 100}

ps
i =

{
ri for i≥ 10
0 for i < 10

PREDmiddle = {pm
i : 1≤ i≤ 100}

pm
i =

{
ri for i≤ 50 and i≥ 61
0 for 51≤ i≤ 60

PREDend = {pe
i : 1≤ i≤ 100}

pe
i =

{
ri for i≤ 90
0 for i≥ 91

In all the three cases start, middle, end the predicting set coincides with REAL up to 10 points that are279

set to zero, at the beginning, in the middle and at the end of the prediction, respectively. Interestingly,280

cnSMAPE is 0.9 in all the three cases, showing that SMAPE is sensible only to the number of non-281

matching points, and not to the magnitude of the predicting error. R2 instead correctly decreases when the282

zeroed sequence of points is further away in the prediction and thus farthest away from the actual values:283

R2 is 0.995 for PREDstart, 0.6293 for PREDmiddle and –0.0955 for PREDend.284

UC3 Use case Consider now the as the ground truth the line y = x, and sample the set T including285

twenty positive integer points T = {ti = (xi,yT
i ) = (i, i) 1≤ i≤ 20} on the line. Define REAL = {ri =286

(xi,yR
i ) = (i, i+N(i)) 1 ≤ i ≤ 20} as the same points of T with a small amount of noise N(i) on the y287

axes, so that ri are close but not lying on the y = x straight line. Consider now two predicting regression288

models:289

• The set PREDc = T representing the correct model;290

• The set PREDw representing the (wrong) model with points defined as pw
i = f (xi), for f the 10-th291

degree polynomial exactly passing through the points ri for 1≤ i≤ 10.292

Clearly, pw
i coincides with ri for 1≤ i≤ 10, but ‖pw

i − ri‖ becomes very large for i≥ 11. On the other293

hand ti 6= ri for all i’s, but ‖ti−ri‖ is always very small. Compute now the two measures R2 and cnSMAPE294
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Table 2. UC3 Use case. We define N, correct model, and wrong model in the UC3 Use
case paragraph. R2: coefficient of determination (Equation 3). cnSMAPE:
complementary normalized SMAPE (Equation 10).

on the first N points i = 1, . . . ,N for 2 ≤ N ≤ 20 of the two different regression models c and w with295

respect to the ground truth set REAL (Table 2).296

For the correct regression model, both measures are correctly showing good results. For the wrong297

model, both measures are optimal for the first 10 points, where the prediction exactly matches the actual298

values; after that, R2 rapidly decreases supporting the inconsistency of the model, while cnSMAPE is not299

affected that much, arriving for N = 20 to a value 1/2 as a minimum, even if the model is clearly very300

bad in prediction.301

UC4 Use case Consider the following example: the seven actual values are (1, 1, 1, 1, 1, 2,302

3), and the predicted values are (1, 1, 1, 1, 1, 1, 1). From the predicted values, it is clear303

that the regression method worked very poorly: it predicted 1 for all the seven values.304

If we compute the coefficient of determination and SMAPE here, we obtain R-squared = –0.346 and305

SMAPE = 0.238. The coefficient of determination illustrates that something is completely off, by having306

a negative value. On the contrary, SMAPE has a very good score, that corresponds to 88.1% correctness307

in the cnSMAPE scale.308

In this use case, if a inexperienced practitioner decided to check only the value of SMAPE to evaluate309

her/his regression, she/he would be misled and would wrongly believe that the regression went 88.1%310

correct. If, instead, the practitioner decided to verify the value of R-squared, she/he would be alerted311

about the poor quality of the regression. As we saw earlier, the regression method predicted 1 for all the312

seven ground truth elements, so it clearly performed poorly.313

UC5 Use case Let us consider now a vector of 5 integer elements having values (1, 2, 3, 4, 5),314

and a regression prediction made by the variables (a, b, c, d, e). Each of these variables can315

assume all the integer values between 1 and 5, included. We compute the coefficient of determination316

and cnSMAPE for each of the predictions with respect to the actual values. To compare the values of the317

coefficient of determination and cnSMAPE in the same range, we consider only the cases when R-squared318

is greater or equal to zero, and we call it non-negative R-squared. We reported the results in Figure 1.319

Figure1 examples Rsquared cnSMAPE five elements.png

Figure 1. UC5 Use case: R-squared versus cnSMAPE. Representation plot of the
values of cnSMAPE (Equation 10) on the y axis and non-negative R-squared (Equation 3)
on the x axis, obtained in the UC5 Use case. Blue line: regression line generated with the
loess smooth method.

As clearly observable in the plot Figure 1, there are a number of points where cnSMAPE has a high320

value (between 0.6 and 1) but R-squared had value 0: in these cases, the coefficient of determination321

and cnSMAPE give discordant outcomes. One of these cases, for example, is the regression where the322

predicted values have values (1, 2, 3, 5, 2), R2 = 0, and cnSMAPE = 0.89.323

In this example, cnSMAPE has a very high value, meaning that the prediction is 89% correct, while324

R2 is equal to zero. The regression correctly predicts the first three points (1, 2, 3), but fails to325

classify the forth element (4 is wrongly predicted as 5), and the fifth element (5 is mistakenly labeled as326

2). The coefficient of determination assigns a bad outcome to this regression because it fails to correctly327

classify the only members of the 4 and 5 classes. Diversely, SMAPE assigns a good outcome to this328

prediction because the variance between the actual values and the predicted values is low, in proportion to329

the overall mean of the values.330

Faced with this situation, we consider the outcome of the coefficient of determination more reliable331

and trustworthy: similarly to the Matthews correlation coefficient (MCC) (Matthews, 1975) in binary332

classification (Chicco and Jurman, 2020; Chicco et al., 2021; Tötsch and Hoffmann, 2021; Chicco et al.,333

2021), R-squared generates a high score only if the regression is able to correctly classify most of the334
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elements of each class. In this example, the regression fails to classify all the elements of the 4 class and335

of the 5 class, so we believe a good metric would communicate this key-message.336

3.2 Medical scenarios337

To further investigate the behavior of R-squared, MAE, MAPE, MSE, RMSE, and SMAPE, we employed338

these rates to a regression analysis applied to a two real biomedical application applications.339

Hepatitis dataset We trained and applied several machine learning regression methods on the Lichting-340

hagen dataset (Lichtinghagen et al., 2013; Hoffmann et al., 2018), which consists of electronic health341

records of 615 individuals including healthy controls and patients diagnosed with cirrhosis, fibrosis, and342

hepatitis. This dataset has 13 features, including a numerical variable stating the diagnosis of the patient,343

and is publicly available in the University of California Irvine Machine Learning Repository (2020).344

There are 540 healthy controls (87.8%) and 75 patients diagnosed with hepatitis C (12.2%). Among the345

75 patients diagnosed with hepatitis C, there are: 24 with only hepatitis C (3.9%); 21 with hepatitis C and346

liver fibrosis (3.41%); and 30 with hepatitis C, liver fibrosis, and cirrhosis (4.88%)347

Obesity dataset To further verify the effect of the regression rates, we applied the data mining methods348

to another medical dataset made of electronic health records of young patients with obesity (Palechor349

and De-La-Hoz-Manotas, 2019; De-La-Hoz-Correa et al., 2019). This dataset is publicly available in350

the University of California Irvine Machine Learning Repository (2019) too, and contains data of 2,111351

individuals, with 17 variables for each of them. A variable called NObeyesdad indicates the obesity level352

of each subject, and can be employed as a regression target. In this dataset, there are 272 children with353

insufficient weight (12.88%), 287 children with normal weight (13.6%), 351 children with obesity type354

I (16.63%), 297 children with obesity type II (14.07%), 324 children with obesity type III (15.35%), 290355

children with overweight level I (13.74%), and 290 children with overweight level II (13.74%). The356

original curators synthetically generated part of this dataset (Palechor and De-La-Hoz-Manotas, 2019;357

De-La-Hoz-Correa et al., 2019).358

Methods For the regression analysis, we employed the same machine learning methods the original two359

of us authors used in their a previous analysis (Chicco and Jurman, 2021): Linear Regression (Montgomery360

et al., 2021), Decision Trees (Rokach and Maimon, 2005), and Random Forests (Breiman, 2001), all361

implemented and executed in the R programming language (Ihaka and Gentleman, 1996). For each362

method execution, we first shuffled the patients data, and then we randomly selected 80% of the data363

elements for the training set and used the remaining 20% for the test set. We trained each method model on364

the training set, applied the trained model to the test set, and saved the regression results measured through365

R-squared, MAE, MAPE, MSE, RMSE, and SMAPE. For the hepatitis dataset, we imputed the missing366

data with the Predictive Mean Matching (PMM) approach through the Multiple Imputation by Chained367

Equations (MICE) software package method (Buuren and Groothuis-Oudshoorn, 2010). We ran 100368

executions and reported the results means and the rankings based on the different rates in Table 3 (hepatitis369

dataset) and in Table 4 (obesity dataset) .370

Hepatitis dataset results: different rate, different ranking We measured the results obtained by these371

regression models on the Lichtinghagen hepatitis dataset with all the rates analyzed in our study: R2,372

MAE, MAPE, RMSE, MSE, and SMAPE (lower part of Table 3).373

These rates generate 3 different rankings. R2, MSE, and RMSE share the same ranking (Random374

Forests, Linear Regression, and Decision Tree). SMAPE and MAPE share the same ranking (Decision375

Tree, Random Forests, and Linear Regression). MAE has its own ranking (Random Forests, Decision376

Tree, and Linear Regression).377

It is also interesting to notice that these six rates select different methods as top performing method.378

R2, MAE, MSE, and RMSE indicate Random Forests as top performing regression model, while SMAPE379

and MAPE select Decision Tree for the first position in their rankings. The position of Linear Regression380

changes, too: on the second rank for R2, MSE, and RMSE, while on the last rank for MAE, SMAPE, and381

MAPE.382

By comparing all these different standings, a machine learning practitioner could wonder what is383

the most suitable rate to choose, to understand how the regression experiments actually went and which384

method outperformed the others. As explained earlier, we suggest the readers to focus on the ranking385

generated by the coefficient of determination, because it is the only metric that considers the distribution386
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Table 3. Regression results on the prediction of hepatitis, cirrhosis, and fibrosis
from electronic health records, and corresponding rankings based on rates. We
performed the analysis on the Lichtinghagen dataset (Lichtinghagen et al., 2013;
Hoffmann et al., 2018) with the methods employed by Chicco and Jurman (2021). We
report here the average values achieved by each method in 100 executions with 80%
randomly chosen data elements used for the training set and the remaining 20% used for
the test set. R2: worst value −∞ and best value +1. SMAPE: worst value 2 and best value
0. MAE, MAPE, MSE, and RMSE: worst value +∞ and best value 0. We reported the
complete regression results including the standard deviations in Table S1. R2 formula:
Equation 3. MAE formula: Equation 6. MAPE formula: Equation 7. MSE formula:
Equation 4. RMSE formula: Equation 5. SMAPE formula: Equation 8.

Table 4. Regression results on the prediction of obesity level from electronic health
records, including standard deviations. Mean values and standard deviations out of
100 executions with 80% randomly chosen data elements used for the training set and the
remaining 20% used for the test set. We performed the analysis on the Palechor
dataset (Palechor and De-La-Hoz-Manotas, 2019; De-La-Hoz-Correa et al., 2019) with
the methods Linear Regression, Decision Tree, and Random Forests. We report here the
average values achieved by each method in 100 executions with 80% randomly chosen
data elements used for the training set and the remaining 20% used for the test set. R2:
worst value −∞ and best value +1. SMAPE: worst value 2 and best value 0. MAE,
MAPE, MSE, and RMSE: worst value +∞ and best value 0. We reported the complete
regression results including the standard deviations in Table S2. R2 formula: Equation 3.
MAE formula: Equation 6. MAPE formula: Equation 7. MSE formula: Equation 4.
RMSE formula: Equation 5. SMAPE formula: Equation 8.

of all the ground truth values, and generates a high score only if the regression correctly predict most387

of the values of each ground truth category. Additionally, the fact that the ranking indicated by R-388

squared (Random Forests, Linear Regression, and Decision Tree) was the same standing generated by 3389

rates out of 6 suggests that it is the most informative one (Table 3).390

Hepatitis dataset results: R2 provides the most informative outcome Another interesting aspect of391

these results regard on the hepatitis dataset regards the comparison between coefficient of determination392

and SMAPE (Table 3). We do not compare the standing of R-squared with MAE, MSE, RMSE, and393

MAPE because these four rates can have infinite positive values and, as mentioned earlier, this aspect394

makes it impossible to detect the quality of a regression from a single score of these rates.395

R-squared generates indicates a very good result for Random Forests (R2 = 0.756), and good results396

for Linear Regression (R2 = 0.535) and Decision Tree (R2 = 0.423). On the contrary, SMAPE generates397

an excellent result for Decision Tree (SMAPE = 0.073), meaning almost perfect prediction, and poor398

results for Random Forests (SMAPE = 1.808) and Linear Regression (SMAPE = 1.840), very close to399

the upper bound (SMAPE = 2) representing the worst possible regression.400

These values mean that the coefficient of determination and SMAPE generate discordant outcomes401

for these two methods: for R-squared, Random Forests made a very good regression and Decision Tree402

made a good one; for SMAPE, instead, Random Forests made a catastrophic regression and Decision403

Tree made an almost perfect one. At this point, a practitioner could wonder which algorithm between404

Random Forests and Decision Trees made the better regression. Checking the standings of the other rates,405

we clearly see that Random Forests resulted being the top model for 4 rates out of 6, while Decision406

Tree resulted being the worst model for 3 rates out of 6. This information confirms that the ranking of407

R-squared is more reliable than the one of SMAPE (Table 3).408

Obesity dataset results: agreement between rankings, except for SMAPE Differently from the409

rankings generated on the hepatitis dataset, the rankings produced on the obesity dataset are more410

concordant (Table 4). Actually, the ranking of the coefficient of determination, MSE, RMSE, MAE, and411

MAPE are identical: Random Forests on the first position, Decision Tree on the second position, and412
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Linear Regression on the third and last position. All the rates’ rankings indicate Random Forests as the413

top performing method.414

The only significant difference can be found in the SMAPE standing: differently from the other415

rankings that all put Decision Tree as second best regressor and Linear Regression as worst regressor,416

the SMAPE standing indicates Linear Regression as runner-up and Decision Tree on the last position.417

SMAPE, in fact, swaps the positions of these two methods, compared to R-squared and the other rates:418

SMAPE says Linear Regression outperformed Decision Tree, while the other rates say that Decision Tree419

outperformed Linear Regression.420

Since five out of six rankings confirm that Decision Tree generated better results than Linear Re-421

gression, and only one of six say vice versa, we believe that is clear that the ranking indicated by the422

coefficient of determination is more informative and trustworthy than the ranking generated by SMAPE.423

4 CONCLUSIONS424

Even if regression analysis makes a big chunk of the whole machine learning and computational statistics425

domains, no consensus has been reached on a unified prefered rate to evaluate regression analyses yet.426

In this study, we compared several statistical rates commonly employed in the scientific literature for427

regression task evaluation, and described the advantages of R-squared over SMAPE, MAPE, MAE, MSE,428

and RMSE.429

Even if MAPE, MAE, MSE, and RMSE are still employed often in several studies Despite the fact430

that MAPE, MAE, MSE, and RMSE are commonly used in machine learning studies, we showed that it is431

impossible to detect the quality of the performance of a regression method by just looking at their singular432

values. An MAPE of 0.7 alone, for example, fails to communicate if the regression algorithm performed433

mainly correctly or poorly. This big flaw left room only for R2 and SMAPE. The first one has negative434

values if the regression performed poorly, and values between 0 and 1 (included) if the regression was435

good. A positive value of R-squared can be considered similar to percentage of correctness obtained by436

the regression. SMAPE, instead, has the value 0 as best value for perfect regressions and has the value 2437

as worst value for disastrous ones.438

In our study, we showed with several use cases and examples that R2 is more truthful and informative439

of than SMAPE: R-squared, in fact, generates a high score only if the regression correctly predicted440

most of the ground truth elements for each ground truth group, considering their distribution. SMAPE,441

instead, focuses on the relative distance between each predicted value and its corresponding ground truth442

element, without considering their distribution. In the present study SMAPE turned out to perform bad in443

identifying bad regression models.444

A limitation of R2 arises in the negative space. When R-squared has negative values, it says indicates445

that the model performed poorly but it is impossible to know how bad a model performed. For example, an446

R-squared equal to –0.5 alone does not say much about the quality of the model, because the lower bound447

is −∞. Differently from SMAPE that has values between 0 and 2, the minus sign of the coefficient of448

determination would however clearly inform the practitioner about the poor performance of the regression.449

Although regression analysis can be applied to an infinite number of different datasets, with infinite450

values, we had to limit the present to a selection of cases, for feasibility purposes. The selection of use451

cases presented here are to some extent limited, since one could consider infinite many other use cases452

that we could not analyze here. Nevertheless, we did not find any use cases in which SMAPE turned453

out to be more informative than R-squared. Based on the results of this study and our own experience,454

R-squared seems to be the most informative rate in many cases, if compared to SMAPE, MAPE, MAE,455

MSE, and RMSE. We therefore suggest the employment of R-squared as the standard statistical measure456

to evaluate regression analyses, in any scientific area.457

In the future, we plan to compare R2 with other regression rates such as Huber metric Hδ (Huber,458

1992), LogCosh loss (Wang et al., 2020), and Quantile Qγ (Yue and Rue, 2011).459
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LIST OF ABBREVIATIONS460

COVID-19: coronavirus disease 2019. DT: Decision Trees. LR: Linear Regression. MAE: mean absolute461

error. MAPE: Mean absolute percentage error. MSE: mean square error. R2: R-squared, coefficient of462

determination. RF: Random Forests. RMSE: root mean square error. SMAPE: symmetric mean absolute463

percentage error.464

SOFTWARE AVAILABILITY465

Our software code is publicly available under GNU General Public License v3.0 at: https://github.466

com/davidechicco/R-squared_versus_other_regression_rates467
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SUPPLEMENTARY INFORMATION695

R2 MAE MSE SMAPE RMSE MAPE

Random Forests mean 0.756 0.149 0.133 1.808 0.361 0.092
Random Forests s.d. 0.073 0.025 0.041 0.035 0.058 0.017
Linear Regression mean 0.535 0.283 0.260 1.840 0.498 0.197
Linear Regression s.d. 0.196 0.036 0.134 0.034 0.108 0.018
Decision Tree mean 0.423 0.157 0.311 0.073 0.546 0.080
Decision Tree s.d. 0.197 0.050 0.120 0.023 0.113 0.032

Table S1. Regression results on the prediction of hepatitis, cirrhosis, and fibrosis
from electronic health records, including standard deviations. Mean values and
standard deviations out of 100 executions with 80% randomly chosen data elements used
for the training set and the remaining 20% used for the test set. We performed the
analysis on the Lichtinghagen dataset (Lichtinghagen et al., 2013; Hoffmann et al., 2018)
with the methods employed by Chicco and Jurman (2021). R2: worst value −∞ and best
value +1. SMAPE: worst value 2 and best value 0. MAE, RMSE, MAPE, MSE: worst
value +∞ and best value 0.

R2 MAE MSE SMAPE RMSE MAPE

Random Forests mean 0.865 0.412 0.512 0.087 0.714 0.094
Random Forests s.d. 0.017 0.028 0.067 0.006 0.047 0.007
Decision Tree mean 0.426 1.214 2.170 0.326 1.471 0.286
Decision Tree s.d. 0.064 0.043 0.236 0.012 0.078 0.010
Linear Regression mean 0.254 1.417 2.828 0.296 1.681 0.325
Linear Regression s.d. 0.030 0.034 0.117 0.007 0.035 0.011

Table S2. Regression results on the prediction of obesity level from electronic
health records, including standard deviations. Mean values and standard deviations
out of 100 executions with 80% randomly chosen data elements used for the training set
and the remaining 20% used for the test set. We performed the analysis on the
Palechor dataset (Palechor and De-La-Hoz-Manotas, 2019; De-La-Hoz-Correa et al.,
2019) with the methods Linear Regression, Decision Tree, and Random Forests. R2:
worst value −∞ and best value +1. SMAPE: worst value 2 and best value 0. MAE,
RMSE, MAPE, MSE: worst value +∞ and best value 0.
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j R2 cnSMAPE

5 0.9897 0.9500
6 0.9816 0.9400
7 0.9701 0.9300
8 0.9545 0.9200
9 0.9344 0.9100

10 0.9090 0.9000
11 0.8778 0.8900
12 0.8401 0.8800
13 0.7955 0.8700
14 0.7432 0.8600
15 0.6827 0.8500
16 0.6134 0.8400
17 0.5346 0.8300
18 0.4459 0.8200
19 0.3465 0.8100
20 0.2359 0.8000

Table 1. UC1 Use case. Values generated through Equation 11. R2: coefficient of
determination (Equation 3). cnSMAPE: complementary normalized
SMAPE (Equation 10).



correct model wrong model
N R2 cnSMAPE R2 cnSMAPE

2 –16.1555357 0.3419595 1 1
3 –0.1752271 0.5177952 1 1
4 0.7189524 0.6118408 1 1
5 0.7968514 0.6640983 1 1
6 0.8439391 0.7162407 1 1
7 0.8711581 0.7537107 1 1
8 0.8777521 0.7772273 1 1
9 0.9069923 0.7962306 1 1

10 0.9196087 0.8101526 1 1
11 0.9226216 0.8230926 −2.149735×1002 0.9090909
12 0.9379797 0.8362582 −1.309188×1004 0.8333333
13 0.9439415 0.8447007 −2.493881×1005 0.7692308
14 0.9475888 0.8518829 −2.752456×1006 0.7142857
15 0.9551004 0.8613108 −2.276742×1007 0.6666667
16 0.9600758 0.8679611 −1.391877×1008 0.6250000
17 0.9622725 0.8740207 −7.457966×1008 0.5882353
18 0.9607997 0.8784127 −3.425546×1009 0.5555556
19 0.9659541 0.8837482 −1.275171×1010 0.5263158
20 0.9635534 0.8870441 −4.583919×1010 0.5000000

Table 2. UC3 Use case. We define N, correct model, and wrong model in the UC3 Use
case paragraph. R2: coefficient of determination (Equation 3). cnSMAPE:
complementary normalized SMAPE (Equation 10).



R2 MAE MSE SMAPE RMSE MAPE
Random Forests (RF) 0.756 0.149 0.133 1.808 0.361 0.092
Linear Regression (LR) 0.535 0.283 0.260 1.840 0.498 0.197
Decision Tree (DT) 0.423 0.157 0.311 0.073 0.546 0.080

rankings:
1st RF RF RF DT RF DT
2nd LR DT LR RF LR RF
3rd DT LR DT LR DT LR

Table 3. Regression results on the prediction of hepatitis, cirrhosis, and fibrosis
from electronic health records, and corresponding rankings based on rates. We
performed the analysis on the Lichtinghagen dataset (Lichtinghagen et al., 2013;
Hoffmann et al., 2018) with the methods employed by Chicco and Jurman (2021). We
report here the average values achieved by each method in 100 executions with 80%
randomly chosen data elements used for the training set and the remaining 20% used for
the test set. R2: worst value ­infinity       and best value +1. SMAPE: worst value 2 and best value
0. MAE, MAPE, MSE, and RMSE: worst value +infinity        and best value 0. We reported the
complete regression results including the standard deviations in Table S1. R 2 formula:
Equation 3. MAE formula: Equation 6. MAPE formula: Equation 7. MSE formula:
Equation 4. RMSE formula: Equation 5. SMAPE formula: Equation 8.



method R2 MAE MSE SMAPE RMSE MAPE
Random Forests (RF) 0.865 0.412 0.512 0.087 0.714 0.094
Decision Tree (DT) 0.426 1.214 2.170 0.326 1.471 0.286
Linear Regression (LR) 0.254 1.417 2.828 0.296 1.681 0.325

rankings:
1st RF RF RF RF RF RF
2nd DT DT DT LR DT DT
3rd LR LR LR DT LR LR

Table 4. Regression results on the prediction of obesity level from electronic health
records, including standard deviations. Mean values and standard deviations out of
100 executions with 80% randomly chosen data elements used for the training set and the
remaining 20% used for the test set. We performed the analysis on the Palechor
dataset (Palechor and De­La­Hoz­Manotas, 2019; De­La­Hoz­Correa et al., 2019) with
the methods Linear Regression, Decision Tree, and Random Forests. We report here the
average values achieved by each method in 100 executions with 80% randomly chosen
data elements used for the training set and the remaining 20% used for the test set. R2:
worst value ­infinity        and best value +1. SMAPE: worst value 2 and best value 0. MAE,
MAPE, MSE, and RMSE: worst value +infinity        and best value 0. We reported the complete
regression results including the standard deviations in Table S2. R 2 formula: Equation 3.
MAE formula: Equation 6. MAPE formula: Equation 7. MSE formula: Equation 4.
RMSE formula: Equation 5. SMAPE formula: Equation 8.
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