LISArD: Learning image similarity to defend against gray-box adversarial attacks


Abstract

State-of-the-art defense mechanisms are typically evaluated in the context of white-box attacks, which is not realistic, as it assumes the attacker can access the gradients of the target network. To protect against this scenario, Adversarial Training (AT) and Adversarial Distillation (AD) include adversarial examples during the training phase, and Adversarial Purification uses a generative model to reconstruct all the images given to the classifier. This paper considers an even more realistic evaluation scenario: gray-box attacks, which assume that the attacker knows the architecture and the dataset used to train the target network, but cannot access its gradients. We provide empirical evidence that models are vulnerable to gray-box attacks and propose LISArD, a defense mechanism that does not increase computational and temporal costs but provides robustness against gray- and white-box attacks without including AT. Our method approximates a cross-correlation matrix, created with the embeddings of noisy (by adding random Gaussian noise) and clean images, to a diagonal matrix while simultaneously promoting correct image classification. Our results show that LISArD can effectively protect against gray-box attacks, can be used in multiple architectures, and carries over its resilience to the white-box scenario. Also, the results show that state-of-the-art models underperform greatly when removing AT and/or moving to gray-box settings, highlighting the lack of robustness from existing approaches to perform in various conditions (aside from white-box settings). All the source code is available at https://github.com/Joana-Cabral/LISArD.
Ask to review this manuscript

Notes for potential reviewers

  • Volunteering is not a guarantee that you will be asked to review. There are many reasons: reviewers must be qualified, there should be no conflicts of interest, a minimum of two reviewers have already accepted an invitation, etc.
  • This is NOT OPEN peer review. The review is single-blind, and all recommendations are sent privately to the Academic Editor handling the manuscript. All reviews are published and reviewers can choose to sign their reviews.
  • What happens after volunteering? It may be a few days before you receive an invitation to review with further instructions. You will need to accept the invitation to then become an official referee for the manuscript. If you do not receive an invitation it is for one of many possible reasons as noted above.

  • PeerJ Computer Science does not judge submissions based on subjective measures such as novelty, impact or degree of advance. Effectively, reviewers are asked to comment on whether or not the submission is scientifically and technically sound and therefore deserves to join the scientific literature. Our Peer Review criteria can be found on the "Editorial Criteria" page - reviewers are specifically asked to comment on 3 broad areas: "Basic Reporting", "Experimental Design" and "Validity of the Findings".
  • Reviewers are expected to comment in a timely, professional, and constructive manner.
  • Until the article is published, reviewers must regard all information relating to the submission as strictly confidential.
  • When submitting a review, reviewers are given the option to "sign" their review (i.e. to associate their name with their comments). Otherwise, all review comments remain anonymous.
  • All reviews of published articles are published. This includes manuscript files, peer review comments, author rebuttals and revised materials.
  • Each time a decision is made by the Academic Editor, each reviewer will receive a copy of the Decision Letter (which will include the comments of all reviewers).

If you have any questions about submitting your review, please email us at [email protected].